WEB SERVICES		2015-16
Geethanjali College of Engineering and Technology
Cheeryal (V), Keesara (M), Ranga Reddy District – 501 301

WEB SERVICES
COURSE FILE

[image: A description...]

DEPARTMENT OF
COMPUTER SCIENCE & ENGINEERING

 								HOD-CSE
									
	S.NO.
	COURSES FILE CONTENTS
	PAGE NO.

	1.
	Cover Page
	

	2.
	Syllabus copy
	

	3.
	Vision of the Department
	

	4.
	Mission of the Department
	

	5.
	PEOs and POs
	

	6.
	Course objectives and outcomes
	

	7.

	Brief notes on the importance of the course and how it fits into the curriculum
	

	8.
	Prerequisites if any
	

	9.
	Instructional Learning Outcomes
	

	10.
	Course mapping with POs
	

	11.
	Class Time Table
	

	12.
	Individual time Table
	

	13.
	Lecture schedule with methodology being used/adopted
	

	14.
	Detailed notes
	

	15.
	Additional topics
	

	16.
	University Question papers of previous years
	

	17.
	Question Bank
	

	18.
	Assignment Questions
	

	19.
	Unit wise Quiz Questions and long answer questions
	

	20.
	Tutorial problems
	

	21.
	Known gaps ,if any and inclusion of the same in lecture schedule
	

	22.
	Discussion topics , if any
	

	23.
	References, Journals, websites and E-links if any
	

	24.
	Quality Measurement Sheets
a. Course End Survey
b. Teaching Evaluation
	

	25.
	Student List
	

	26.
	Group-Wise students list for discussion topics
	

	Geethanjali College of Engineering and Technology
DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
Name of the Subject/Lab Course: WEB SERVICES
JNTU CODE: 58035 Programme: UG/PG

	Branch : CSE Version No: 1
Year : IV DocumentNumber :GCET/CSE/304
Semester : II No. of Pages:

	Classification status (Unrestricted/Restricted) :
Distribution List:

	Prepared by :
 1) Name : G.SWAPNA
 2) Sign :
 3) Design : Assistant Professor
 4) Date :
	 Updated by :
1) Name : VAMSI KRISHNA
2) Sign :
3) Design : Assistant Professor
4) Date :

	Verified by : *For Q.C only
1) Name : SHIV NARAYANA 1)Name :
2) Sign : 2) Sign :
3) Design : Associate Professor 3) Design :
4) Date : 4) Date :

	Approved by(HOD):
1) Name:

2) Sign:

3) Date:

WEB SERVICES		2015-16

WEB SERVICES		2015-16

4

58035 WEB SERVICES
ELECTIVE-III

UNIT-I
Evolution and emergence of Web Services- Evolution of distributed computing, Core distributed computing technologies – client/server, CORBA, JAVA RMI, Micro Soft DCOM, MOM, Challenges in distributed computing role of J2EE and XML in distributed computing, emergence of Web Services and Service Oriented Architecture (SOA)
UNIT- II
Introduction to Web Services- The definition of web services, basic operational model of web services benefits and challenges of using web services
UNIT-III
Web Services Architecture and its characteristics, core building blocks of web services, standards and technologies available for implementing web services, web services communication, basic
 steps of implementing web services, developing web services enabled applications.
UNIT- IV
Core fundamentals of SOAP – SOAP Messages Structure, SOAP encoding SOAP message
 exchange models SOAP communication and messaging SOAP security
UNIT – V
 Developing Web Services using SOAP- Building SOAP Web Services, developing SOAP Web Services using Java, limitations Of SOAP.
UNIT – VI
Describing Web Services- WSDL – WSDL in the world of Web Services, Web Services life cycle, anatomy of WSDL definition document, WSDL bindings, WSDL Tools limitations of WSDL
UNIT VII
Discovering Web Services – Service discovery, role of service discovery in a SOA service discovery mechanisms, UDDI-UDDI Registries, uses of UDDI Registry, Programming with UDDI, UDDI data structures, support for categorization in UDDI registries publishing API Publishing information to a UDDI Registry searching information in UDDI Registry deleting information in a UDDI
UNIT- VIII
Web Services Interoperability- Means of ensuring Interoperability Overview of NET and J2EE,Web Services Security- XML security frame work, XML encryption, XML digital signature, XKMS structure, guidelines for signing XML documents.
TEXT BOOKS:
1. Developing Java Web Services, R Nagappan, R. Skoczylas, R.P. Sriganesh, Willey India, rp-2008.
2. Developing Enterprise Web Services, S. Chatterjee, J. Webber. Pearson Education, 2008
3. XML, Web Services, and the Data revolution, F.P. Coyle, Pearson Education.
REFERENCES:
1	Building Web Services with Java, 2nd Edition, S. Graham and others Pearson Edn., 2008
2	Java Web Services, D.A Chappell & T. Jewell, O’Relly,SPD.
3	McGovern, etal., “Java Web Services Architecture”, Morgan Kaufmann Publishers, 2005
4	J2EE Web Services, Richard Monson-Haefel, Pearson Education
5	Web Services, G. Alonso, F. Casati and others, Springer, 2005

3. Vision of the Department
To produce globally competent and socially responsible Information Technology
Professionals contributing to the advancement of engineering and technology which
involves creativity and innovation by providing excellent learning environment with world
class facilities.
4. Mission of the Department

1. To be a center of excellence in instruction, innovation in research and scholarship, and service to the stake holders, the profession, and the public.

2. To prepare graduates to enter a rapidly changing field as a competent Information Technology Professional.

3. To prepare graduate capable in all phases of software development, possess a firm understanding of hardware technologies, have the strong mathematical background necessary for scientific computing, and be sufficiently well versed in general theory to allow growth within the discipline as it advances.

4. To prepare graduates to assume leadership roles by possessing good communication skills, the ability to work effectively as team members, and an appreciation for their social and ethical responsibility in a global setting.

5. PEOs and Pos

PROGRAM EDUCATIONAL OBJECTIVES (PEOs) OF C.S.E DEPARTMENT
1. To provide graduates with a good foundation in mathematics, sciences and engineering fundamentals required to solve engineering problems that will facilitate them to find employment in industry and / or to pursue postgraduate studies with an appreciation for lifelong learning.
2. To provide graduates with analytical and problem solving skills to design algorithms, other hardware / software systems, and inculcate professional ethics, inter-personal skills to work in a multi-cultural team.
3. To facilitate graduates to get familiarized with the art software / hardware tools, imbibing creativity and innovation that would enable them to develop cutting-edge technologies of multi-disciplinary nature for societal development.
PROGRAM OUTCOMES (CSE)

1. An ability to apply knowledge of mathematics, science and engineering to develop and analyze computing systems.
2. An ability to analyze a problem and identify and define the computing requirements appropriate for its solution under given constraints.
3. An ability to perform experiments to analyze and interpret data for different applications.
4. An ability to design, implement and evaluate computer-based systems, processes, components or programs to meet desired needs within realistic constraints of time and space.
5. An ability to use current techniques, skills and modern engineering tools necessary to practice as an IT professional.
6. An ability to recognize the importance of professional, ethical, legal, security and social issues and addressing these issues as a professional.
7. An ability to analyze the local and global impact of systems /processes /applications /technologies on individuals, organizations, society and environment.
8. An ability to function in multidisciplinary teams.
9. An ability to communicate effectively with a range of audiences.
10. Demonstrate knowledge and understanding of the engineering, management and economic principles and apply them to manage projects as a member and leader in a team.
11. A recognition of the need for and an ability to engage in life-long learning and continuing professional development
12. Knowledge of contemporary issues.
13. An ability to apply design and development principles in producing software systems of varying complexity using various project management tools.
14. An ability to identify, formulate and solve innovative engineering problems.
6. Course objectives and outcomes

Course objectives
· To understand the Principles of Web & Web Services.
· To understand the core distributed computing technologies.
· To implement Web Service Architectures.
· Explore fundamental issues of Web Services.
Course Outcomes:
CO58035.1: Design and launch Web services.
CO58035.2: Use, in their own programs, Web services published by others.
CO58035.3: Employ the publish, find, bind architecture for Web services and to use the corresponding standards, in particular, Web Services Description Language (WSDL), Simple Object Access Protocol (SOAP), and Universal Description, Discovery and Integration (UDDI).
CO58035.4: Conceptually model Web services and formulate specifications of them in the Resource Description Framework (RDF) and the Web Ontology Language (OWL).
CO58035.5: Perform matchmaking on Web services.
CO58035.6: Develop registration and discovery techniques for Web services.
CO58035.7: Apply principles of distributed transactions, business processes, business protocols, rules, and agents to specify, monitor, and manage the behavior of composed services.
CO58035.8: Evaluate emerging and proposed standards for the main components of Web services architectures.

6. Brief notes on the importance of the course and how it fits into the curriculum

A web service is a piece of business logic, located somewhere on the Internet, that is accessible through standard-based Internet protocols such as HTTP or SMTP. Using a web service could be as simple as logging into a site or as complex as facilitating a multi-organization business negotiation.

7. Prerequisites if any

Familiarity with programming language and a good understanding of algorithms and data structures.

8. Instructional Learning Outcomes

Learning Outcomes
	S.No
	Unit
	Contents
	Outcomes

	1
	 I
	Evolution and emergence of Web Services- Evolution of distributed computing,
Core distributed computing technologies – client/server, CORBA, JAVA RMI, Micro Soft DCOM, MOM,
Challenges in distributed computing role of J2EE and XML in distributed computing, Challenges in MANETS
emergence of Web Services and Service Oriented Architecture (SOA)
	· Have the knowledge of service oriented computing paradigm, its evolution and the emergence of web services.
· Understand the SOA and various key standards that enable the realization of web services like SOAP, WSDL and UDDI.
· Compare and evaluate various Service discovery protocols.
· Have the skills to build and deploy web services using a range of current technologies.
· Have an understanding on emerging issues, trends in the web services.

	 2
	II
	Introduction to Web Services.
The definition of web services
basic operational model of web services benefits and challenges of using web services.
	· Explain how web services provide a more open approach to distributed computing than prior models, and give an evaluation of the potential impact that they have on business processes.
· Create service descriptions suitable for implementing a range of message exchange patterns.
· Incorporate existing web services into an application to introduce new functionality or provide access to online information.
· Critically evaluate different types of web services, functions and value to a business.
· Describe and explain quality of service aspects of web-service provision, and show how these can be applied to existing services to add value to them.

	 3
	III
	Web Services Architecture and its characteristics, core building blocks of web services
standards and technologies available for implementing web services
web services communication
basic steps of implementing web services developing web services enabled applications.
	· Analyze Web Services Architecture and Web Services Fundamentals.
· Take advantage of the Simple Object Access Protocol.
· Grasp the XML Technologies for Web Services.
· Know how to use Java Web Services Developer Pack and Java technologies and tools for Web Services.
· Use Web Services Description Languages for describing network services of any particular application using concepts like: ports, messages, bindings and services.

	 4
	IV
	Core fundamentals of SOAP
SOAP Messages Structure
SOAP encoding
SOAP message exchange models
SOAP communication and messaging
SOAP security
	· Explain approaches to represent multimedia data in digital format and identify their properties.
· Derive the rational of the multimedia representation format and compression algorithms based on the human visual and auditory perception.
· Analyze image, video and audio in the frequency domain to identify important components to be encoded.
· Explain the major steps in some of the image, video and audio compression standards.
· Apply lossless and lossy compression techniques on multimedia data.

	 5
	V
	Developing Web Services using SOAP
Building SOAP Web Services
developing SOAP Web Services using Java
limitations Of SOAP
Case Study
	· Look at XML as a paradigm within data theory.
· Abstract out from XML as a technology and view the information and theory behind XML and its related technologies.
· Abstract an entity to an abstract model and represent this as an XML schema.
· The student will be able to demonstrate how it is utilized in entity modeling.

	6
	VI
	Describing Web Services- WSDL
WSDL in the world of Web Services
Web Services life cycle
anatomy of WSDL definition document
WSDL bindings
WSDL Tools limitations of WSDL
	· Apply Action Scripts that effectively utilize functions, logic, variables, loops, and other programmatic techniques.
· Implement project programming techniques into functional user interface designs.
· Examine, analyze, and critique interactive media products and processes.
· Conceptualize and plan animation and interactive sequences for screen output or Web delivery.
· Develop and produce interactive content and animations for interface design and Web display.

	7
	VII
	Discovering Web Services – Service discovery
role of service discovery in a SOA service discovery mechanisms
UDDI-UDDI Registries, uses of UDDI Registry
Programming with UDDI, UDDI data structures, support for categorization in UDDI registries
Publishing API Publishing information to a UDDI Registry searching information in UDDI Registry deleting information in a UDDI
	· Exploring the Flex Builder interface.
· Creating event handlers using inline Action Script.
· Creating the basic photo gallery application & home page.
· Triggering validation with Action Script.

	8
	VIII
	Web Services Interoperability
Means of ensuring Interoperability Overview of NET and J2EE
Web Services Security- XML security frame work
XML encryption
XML digital signature
XKMS structure
guidelines for signing XML documents
	· Comparing and analyzing most popular RIA frame works.
· Design, code and test a full scaled Ajax enabled application.
· Compare and contrast different RIA client technologies.
· Demonstrating the importance of open vendor neutral languages, such as HTML5.

9. Course mapping with Pos

Mapping of Course to PEOs and Pos
	S.No.
	Course component
	code
	course
	Semester
	PEO 1
	PEO2
	PEO 3
	POs

	1
	Professional core
	58035
	
	I
	√
	√
	√
	PO2,PO3,PO4,PO5,PO7,PO8,PO9,PO10,PO11,PO12,PO13,PO14

	S.No.
	Course Outcomes
	POs

	1
	 Design and launch Web services.
	PO13,PO14

	2
	Use, in their own programs, Web services published by others
	 PO2 ,PO3,PO4,PO5, PO7,PO8

	3
	Employ the publish, find, bind architecture for Web services and to use the corresponding standards, in particular, Web Services Description Language (WSDL), Simple Object Access Protocol (SOAP), and Universal Description, Discovery and Integration (UDDI).
	PO2 ,PO3,PO4,PO5, PO7,PO8,PO9

	4
	Conceptually model Web services and formulate specifications of them in the Resource Description Framework (RDF) and the Web Ontology Language (OWL).
	PO2 ,PO3,PO4,PO5, PO10,PO11,PO12

	5
	 Perform matchmaking on Web services.
	PO2 ,PO3,PO4,PO5, PO10,PO11,PO12

	6
	Develop registration and discovery techniques for Web services
	PO2 ,PO3,PO4,PO5, PO7,PO8,PO9

	7
	Apply principles of distributed transactions, business processes, business protocols, rules, and agents to specify, monitor, and manage the behavior of composed services
	PO2 ,PO3,PO4,PO5, PO7,PO8,PO9

	8
	Evaluate emerging and proposed standards for the main components of Web services architectures
	PO12

Mapping of Course outcomes with Programme outcomes:

*When the course outcome weightage is < 40%, it will be given as moderately correlated (1).
*When the course outcome weightage is >40%, it will be given as strongly correlated 	(2).

	POs
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	

	WS
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	CO 1: Design and launch Web services.
	2
	1
	1
	2
	2
	2
	2
	2
	1
	2
	1
	1
	2
	1
	

	CO 2: Use, in their own programs, Web services published by others.
	2
	1
	1
	2
	2
	1
	1
	2
	1
	2
	1
	1
	2
	1
	

	CO 3: Employ the publish, find, bind architecture for Web services and to use the corresponding standards, in particular, Web Services Description Language (WSDL), Simple Object Access Protocol (SOAP), and Universal Description, Discovery and Integration (UDDI).
	2
	2
	1
	2
	2
	1
	1
	2
	1
	2
	1
	2
	2
	1
	

	CO 4: Conceptually model Web services and formulate specifications of them in the Resource Description Framework (RDF) and the Web Ontology Language (OWL).
	2
	2
	1
	1
	2
	1
	1
	2
	1
	1
	1
	1
	1
	1
	

	CO 5: Perform matchmaking on Web services.
	2
	1
	1
	1
	2
	1
	1
	2
	1
	1
	1
	1
	1
	1
	

	CO 6: Develop registration and discovery techniques for Web services
	2
	1
	1
	1
	2
	1
	1
	2
	1
	1
	1
	1
	1
	1
	

	CO 7: Apply principles of distributed transactions, business processes, business protocols, rules, and agents to specify, monitor, and manage the behavior of composed services
	2
	1
	1
	1
	2
	1
	2
	2
	2
	1
	1
	1
	2
	2
	

	CO 8: Evaluate emerging and proposed standards for the main components of Web services architectures
	2
	1
	1
	2
	2
	1
	1
	2
	2
	2
	1
	1
	2
	2
	

10. Class Time Table

11. Individual Time Table

13. Lecture schedule with methodology being used/adopted

	S.no
	Unit No
	Total no of Periods
	Topics to be covered
	Reg/Additional
	 Teaching aids used
LCD/OHP/BB
	Remarks

	1
	
	
	UNIT – I
	
	
	

	
	
	
	Introduction to Web Services
	Regular
	OHP,BB
	

	
	
	
	Evolution and emergence of Web Services- Evolution of distributed computing,
	Regular
	OHP,BB
	

	
	
	
	Core distributed computing technologies – client/server, CORBA, JAVA RMI, Micro Soft DCOM, MOM,
	Regular
	OHP,BB
	

	
	
	
	Challenges in distributed computing role of J2EE and XML indistributed computing,Challenges in MANETS
	Regular
	BB, OHP
	

	
	
	
	emergence of Web Services and Service Oriented Architecture (SOA)
	Regular
	BB, OHP
	

	2
	
	
	UNIT – II
	
	
	

	
	
	
	Introduction to Web Services
	Regular
	BB
	

	
	
	
	The definition of web services
	Regular
	BB
	

	
	
	
	basic operational model of web services benefits and challenges of using web services
	Regular
	OHP,BB
	

	3
	
	
	UNIT – III
	
	
	

	
	
	
	Web Services Architecture and its characteristics, core building blocks of web services
	Regular
	BB
	

	
	
	
	standards and technologies available for implementing web services
	Regular
	BB
	

	
	
	
	web services communication
	Regular
	OHP,BB
	

	
	
	
	basic steps of implementing web services
	Regular
	BB,OHP
	

	
	
	
	developing web services enabled applications
	Regular
	BB
	

	
	
	
	Case Study
	Regular
	OHP,BB
	

	
	
	
	Case Study
	Regular
	BB
	

	
	
	
	Case Study
	Regular
	BB
	

	4
	
	
	UNIT – IV
	
	
	

	
	
	
	Core fundamentals of SOAP
	Regular
	OHP,BB
	

	
	
	
	SOAP Messages Structure
	Regular
	BB
	

	
	
	
	SOAP encoding
	Regular
	OHP,BB
	

	
	
	
	SOAP message exchange models
	Regular
	OHP,BB
	

	
	
	
	SOAP communication and messaging
	Regular
	OHP,BB
	

	
	
	
	SOAP security
	Regular
	BB,OHP
	

	5
	
	
	UNIT – V
	
	
	

	
	
	
	Developing Web Services using SOAP
	Regular
	OHP,BB
	

	
	
	
	Building SOAP Web Services
	Regular
	OHP,BB
	

	
	
	
	developing SOAP Web Services using Java
	Regular
	BB
	

	
	
	
	limitations Of SOAP
	Regular
	OHP,BB
	

	
	
	
	Case Study
	Regular

	BB
	

	6
	
	
	UNIT – VI
	
	
	

	
	
	
	Describing Web Services- WSDL
	Regular
	BB
	

	
	
	
	WSDL in the world of Web Services
	Regular
	BB
	

	
	
	
	Web Services life cycle
	Regular
	BB
	

	
	
	
	Anatomy of WSDL definition document
	Regular
	BB
	

	
	
	
	WSDL bindings
	Regular
	BB
	

	
	
	
	WSDL Tools limitations of WSDL
	Regular
	OHP,BB
	

	7
	
	
	UNIT – VII
	
	
	

	
	
	
	Discovering Web Services – Service discovery
	Regular
	OHP,BB
	

	
	
	
	role of service discovery in a SOA service discovery mechanisms
	Regular
	BB
	

	
	
	
	UDDI-UDDI Registries, uses of UDDI Registry
	Regular
	OHP,BB
	

	
	
	
	Programming with UDDI, UDDI data structures, support for categorization in UDDI registries
	Regular
	BB
	

	
	
	
	publishing API Publishing information to a UDDI Registry searching information in UDDI Registry deleting information in a UDDI
	Regular
	BB
	

	8
	
	
	UNIT – VIII
	
	
	

	
	
	
	Web Services Interoperability
	Regular
	OHP,BB
	

	
	
	
	Means of ensuring Interoperability Overview of NET and J2EE
	Regular
	OHP,BB
	

	
	
	
	Web Services Security- XML security frame work
	Regular
	OHP,BB
	

	
	
	
	XML encryption
	Regular
	OHP,BB
	

	
	
	
	XML digital signature
	Regular
	OHP,BB
	

	
	
	
	XKMS structure
	Regular
	OHP,BB
	

	
	
	
	guidelines for signing XML documents
	Regular
	OHP,BB
	

14. Detailed notes

UNIT-I
 (
1
Evolution

and

Emergence
of

Web

Services
)	 (
Evolution

and

Emergence
of

Web

Services


Evolution

of

Distributed

Computing


C
o
re

distributed

computing

technologies


Client/server


CORBA


JAVA

RMI


Microsoft

DCOM


MOM


Challenges

in

Distributed

Computing


Role

of

J2EE

&

X
M
L

in

Distributed

C
o
m
p.


Emergence

of

WS

&

Service

Oriented
Architecture

(SOA)
2
)

	 (
Evolution

of

Distributed

Computing

The

Internet

has

revolutionized

our

business

by

providing

an

information

highway,

which

acts

as

a

n
e
w

form

of

communication

backbone.

This

n
e
w

information

medium

h
as

shifted

business

from

th
e

traditional

brick-and

mortar

infrastructures

to

a

virtual

world

where

they

can

serve

customers

not

just

the

regular

eight

hours,

but

round-the-clock

and

around

the

world.
4
)
 (
Evolution

of

Distributed

Computing

It

enhances

our

organizations

with

significant

benefits

in

terms

of

business

productivity,

cost

savings,

and

customer

satisfaction.

As

a

result,

modern

organizations

are

compelled

to

re-evaluate

their

business

models

and

plan

on

a

business

vision

to

interact

with

their

customers,

suppliers,

resellers,

a
nd

partners

using

an

Internet-based

technology

space.
5
)	 (
Evolution

of

Distributed

Computing

To

achieve

this

goal

of

obtaining

an
Internet
organizations
business
are
presence,
exposing
and
distributing

their

business

applications
over

the

Internet

by

going

through

a

series

of

technological

innovations.

The

key

phenomenon

of

enabling

business

applications

over

the

Internet

is

based

on

a

fundamental

technology

called

distributed

computing.
6
)

 (
Evolution

of

Distributed

Computing


Distributed

computing

has

b
ee
n

popular

within

local

area

networks

for

many

years,

and

it

took

a

m
ajo
r

step

forward

by

adopting

the

Internet

as

its

base

platform

and

by

supporting

its

op
e
n

sta
nd
ar
d
-

based

technologies.


What

Is

Distributed

Computing?


In

the

early

years

of

computing,

mainframe-based

applications

were

considered

to

be

the

best-fit

solu
t
ion

for

executing

large-scale

d
ata

processing

applications.
7
)	 (
Evolution

of

Distributed

Computing


With

the

advent

of

personal

computers

(PCs),

the

concept

of
 software

p
r
og
rams

running

on

standalone

machines became

much

m
o
re

popular

in

terms

of

the

cost

of

ownership

and

the

ease

of

application

use.


With

the

number

of

PC-based

application
programs
machines

between
running
on
independent
growing,

the

communications
s
u
c
h

application

p
r
og
rams

became extremely

complex

and

added

a

growing

challenge

in
the

aspect

of

application-to-application

interaction.
8
)
 (
Evolution

of

Distributed

Computing


Lately,
network
computing
importance,
and
enabling
procedure

calls

(RPCs)

over

a
protocol

called

Transmission
gained
remote

network

Control
Protocol/Internet

Protocol

(TCP/IP)

turned
out

to

be

a

widely
 accepted

way

for

application

software

communication.


This

demanding

requirement

lead

to

the

concept

of

distributed

computing

applications.
9
)	 (
Evolution

of

Distributed

Computing


As

a

definition,

“Distributing

Computing

is

a

type

of

computing

in

which

different

components

and

objects

comprising

an

application

ca
n

be

located

on

different

computers

connected

to

a

network”

10
)
 (
Evolution

of

Distributed

Computing
Internet-based

distributed

computing

model
11
)	 (
The

Importance

of

Distributed
Computing


The

distributed

computing

environment

provides

many

significant

advantages

compared

to

a

traditional

standalone

application.


The

following

are

some

of

those

key

advantages:


Higher

performance.

Applications

c
an

execute

in

parallel

and

distribute

the

load

across

multiple

servers.


Collaboration.

Multiple

applications

ca
n be

connected
 through

standard

distributed

computing

mechanisms.
12
)

 (
The

Importance

of

Distributed
Computing


Higher

reliability

and

availability.

Applications

or

servers

can

be

clustered

in

multiple

machines.


Scalability.

This

ca
n

be

achieved

by

deploying

these

reusable

distributed

components

on

powerful

servers.


Extensibility.

This

ca
n

be

achieved

through

dynamic

(re)configuration

of

applications

t
h
at

are

distributed

across

the

network.
13
)	 (
The

Importance

of

Distributed
Computing


Higher

productivity and

lower

development

cycle

time.

By

breaking

up

large

problems

into

smaller

on
es
,

these

individual

components

ca
n

be

developed

by

smaller

development

teams

in

isolation.


Reuse.

The

distributed

components

may

perform

various

services

t
h
at

c
an
potentially

be
applications.

development
used

by

multiple

client
It
effort
saves
and
repetitive
improves
interoperability

between

components.
14
)
 (
The

Importance

of

Distributed
Computing


Reduced

cost.

Because

this

model

provides

a

lot

of

reuse

of

once

developed

components

that

are

accessible

over
the

network,

significant

cost

reductions

c
an

be

achieved.


Distributed

computing

also

has

changed

the

way

traditional

network

programming

is

done

by

providing

a

shareable

object

like

semantics

across

networks

using

programming

languages

like

Java,

C,

and

C++.
15
)	 (
Core

Distributed

Computing
Technologies


Client/Server

applications.


OMG

CORBA.


Object

Management

Group(OMG)


Common
Object
Request
Broker

Architecture(CORBA)


Java

RM
I

(Remote

Method

Invocation)


Microsoft

COM/DCOM.


Component

Object

Model

(COM)


Distributed
(DCOM)
C
o
mm
on
Object
Model


MOM

(Message-Oriented

Middleware)
16
)
 (
Client-Server

Applications


The

early

years

of

distributed

application

architecture

were

dominated

by

two-tier

business

applications.


In

a

two-tier

architecture

model,

the
 first

(upper)

tier

handles

the

presentation

and

business

logic

of

the

user

application

(client),

and

the

second/lower

tier

handles

the

application

organization

and

its

data

storage

(server).


This

app
r
o
ac
h

is

commonly

called

client-

server

applications

architecture.
17
)	 (
Client-Server

Applications


Generally,

the
 server

in

a client/server

application

model

is

a

database

server

that

is

mainly

responsible

for

the

organization

and

retrieval

of

data.


The
 application

client

in

this

model

handles

most

of

the

business

processing

and

provides

the

graphical

user

interface

of

the

application.


It

is

a

very

popular

d
es
ign

in

business

applications

where

the

user

interface

and

business

logic

are

tightly

coupled

with

a

database

server

for

handling

data

retrieval

and

processing.
18
)

 (
Client-Server

Applications
An

example

of
 a

client-server

application
19
)Limitations Of The Client-Server Application Model
Complex business processing at the client side
demands robust client systems.
Security is more difficult to implement because the algorithms and logic reside on the client side making it more vulnerable to hacking.
Increased network bandwidth is needed to accommodate many calls to the server, which can impose scalability restrictions.
Maintenance and upgrades of client applications are extremely difficult because each client has to be maintained separately.
Client-server architecture suits mostly database- oriented standalone applications and does not target robust reusable component-oriented applications.	20

	

 (
CORBA


By

adopting

CORBA,

the

applications

can

reside

and

run

on

any

hardware

platform

located

anywhere

on

the

network,

and

can

be

written

in

any

language

that

has

mappings

to

a

neutral

interface

definition

called

the

Interface

Definition

Language

(IDL).


An

IDL

is

a

specific

interface

language

designed

to

expose

the

services

(methods/functions)

of

a

CORBA

remote

object.


CORBA

also

defines

a

collection

of

system-level

services

for

handling

low-level

application

services

like

life-cycle,

persistence,

transaction,

naming,

security,

and

so
 forth.
22
)

 (
CORBA


The Common

Object

Request

Broker

Architecture

(CORBA)

is

an

industry

wide,

open

standard

initiative,

developed

by

the

Object

Management

Group

(OMG)

for

enabling

distributed

computing

that

supports

a

wide

range

of

application

environments.


OMG

is

a

nonprofit

consortium

responsible

for

the

production

and

maintenance

of

framework

specifications

for

distributed

and

interoperable

object-oriented

systems.


CORBA

differs

from

the

traditional

client/server

model

because

it

provides

an

object-oriented

solution that

does

not

enforce

any

proprietary

protocols

or

any

particular

programming

language,

operating

system,

or

hardware

platform.
21
)
 (
CORBA


Initially,

CORBA

1.1

was

focused

on

creating

component

level,

portable

object

applications

without

interoperability.


The

introduction

of

CORBA

2.0

added

interoperability

between

different

ORB

vendors

by

implementing

an

Internet

Inter-ORB

Protocol

(IIOP).


The

IIOP

defines

the

ORB

backbone,

through

which

other

ORBs

can

bridge

and

provide

interoperation

with

its

associated

services.


In

a

CORBA-based

solution,

the

Object

Request

Broker

(ORB)

is

an

object

bus

that

provides

a

transparent

mechanism

for

sending

requests

and

receiving

responses

to

and

from

objects,

regardless

of

the

environment

and

its

location.
23
)	 (
CORBA


The

ORB

intercepts

the

client’s
 call

and

is

responsible

for

finding

its

server

object

that

implements

the

request,

passes

its

parameters,

invokes

its

method,

and

returns

its

results

to

the

client.


The

ORB,

as

part

of

its

implementation,

provides

interfaces to

the
CORBA
services, which

allows
it

to

build

custom-distributed

application

environments.


Following

figure

illustrates

the

architectural

model

of

CORBA
 with

an

example

representation

of

applications

written

in

C,

C++,

and

Java

providing

IDL

bindings.
24
)

 (
CORBA

Architecture

&

Components
An

example

of

the

CORBA

architectural

model
25
)	 (
CORBA

Architecture

&

Components


The

C
O
RBA

architecture

is

composed

of

the

following

components:


IDL.

C
O
RBA

uses

IDL

contracts

to

specify

the

application

boundaries

and

to

establish

interfaces

with

its

clients.


ORB.

It

acts

as

the

object

bus

or

the

bridge,

providing

the

communication

infrastructure

to

send

and

receive

request/responses

from

the

client

and

server.
26
)

Advantages of CORBA over a traditional client/server application
OS and programming-language independence :
Multi-language and multi-platform application environments, which provide a logical separation between interfaces and implementation
Legacy and custom application integration: Using CORBA IDL, developers can encapsulate existing and custom applications as callable client applications and use them as objects on the ORB
Rich distributed object infrastructure :CORBA offers developers a rich set of distributed object services, such as the Lifecycle, Events, Naming, Transactions, and Security services.
Location transparency: An object reference is independent of the physical location and application level location.
27

Advantages of CORBA over a traditional client/server application
Network transparency. By using the IIOP
protocol, an ORB can interconnect with any ORB located elsewhere on the network.
Remote callback support. CORBA allows objects to receive asynchronous event notification from other objects.
Dynamic invocation interface. CORBA clients can both use static and dynamic methods invocations. They either statically define their method invocations through stubs at compile time, or have the opportunity to discover objects’ methods at runtime.

28

 (
Disadvantages

of

CORBA


High

initial

investment
.

CORBA-based

applications

require

huge

investments

in

regard

to

new

training

and

the

deployment

of

architecture,

even

for

small-scale

applications.


Availability

of

CORBA

services
.

The

Object

services

specified

by

the

OMG

are

still
 lacking

as

implementation

products.


Scalability.

Due

to

the

tightly

coupled

nature

of

the

connection-oriented

CORBA

architecture,

very

high

scalability

expected

in

enterprise

applications

may

not

be

achieved.


However,

most

of

those

disadvantages

may

be
out

of

date

today.
29
)	 (
Java

RMI


Java

RMI

was

developed

by
Sun

Microsystems

as

the

standard

mechanism

to

enable

distributed

Java

objects-based

application

development

using

the

Java

environment.


RMI

provides

a

distributed

Java

application

environment

by

calling

remote

Java

objects

and

passing

them

as

arguments

or

return

values.


It

uses

Java

object

serialization—a

lightweight

object

persistence

technique

that allows

the

conversion

of

objects

into

streams.


Before

RMI,

the

only

way

to

do

inter-process

communications

in

the

Java

platform

was

to

use

the

standard
 Java

network

libraries.
30
)

 (
Java

RMI
A

Java

RMI

architectural

model
31
)	 (
Java

RMI

Components


RMI

client
.

The

RMI

client,

which

can

be

a

Java

applet

or

a

standalone

application,

performs

the

remote

method

invocations

on

a

server

object.

It

can

pass

arguments

that

are

primitive

data

types

or

serializable

objects.


RMI

stub
.

The

RMI

stub

is

the

client

proxy

generated

by

the

rmi

compiler

(
rmic

provided

along

with

Java

developer

kit—JDK)

that

encapsulates

the

network

information

of

the

server
and

performs

the

delegation

of

the

method

invocation

to

the

server.

The

stub

also

marshals

the

method

arguments and

unmarshals
the

return

values

from

the

method

execution.
32
)

 (
Java

RMI

Components


RMI

client
.

The

RMI

client,

which

can

be

a

Java

applet

or

a

standalone

application,

performs

the

remote

method

invocations

on

a

server

object.

It

can

pass

arguments

that

are

primitive

data

types

or

serializable

objects.


RMI

infrastructure
.

The

RMI

infrastructure

consists of

two

layers:

the

remote

reference

layer

and

the

transport

layer.


The

remote

reference

layer

separates

out

the

specific

remote
reference

behavior

from

the

client

stub.


It

handles

certain

reference

semantics

like

connection

retries,

which

are

unicast/multicast

of

the

invocation

requests.
33
)	 (
Java

RMI

Components


The

transport

layer

actually
provides

the

networking

infrastructure,
which

facilitates
the

actual

data

transfer

during

method

invocations,

the

passing

of

formal

arguments,

and

the

return

of

back

execution

results.


RMI

skeleton
. The

RMI

skeleton,
which

also

is

generated

using

the

RMI

compiler

(rmic)

receives

the

invocation

requests

from the

stub

and

processes

the

arguments (unmarshalling)

and

delegates

them

to

the

RMI

server.


Upon

successful

method

execution,

it

marshals

the

return

values

and

then

passes
them

back
 to

the

RMI

stub

via

the

RMI

infrastructure.
34
)

 (
Java

RMI

Components


RMI

server
.

The

server

is

the

Java

remote

object

that implements

the

exposed interfaces

and

executes

the

client

requests.


It

receives

incoming

remote

method

invocations

from

the

respective

skeleton,

which

passes

the

parameters

after

unmarshalling.


Upon

successful method execution,
return
 values

are

sent

back
 to

the

skeleton,

which

passes
 them

back

to

the

client

via

the

RMI

infrastructure.


RMI

is

built

over

TCP/IP

sockets,

but

the

added

advantage

is

that

it

provides

an

object-oriented

approach

for

interprocess

communications.


RMI-IIOP

(RMI

over

IIOP)

is

a

protocol

that

has

been

developed

for

enabling

RMI

applications

to

interoperate

with

CORBA
 components.
35
)	 (
Limitations

of

RMI


RMI

is

limited

only

to

the

Java

platform.

It

does

not

provide

language

independence

in

its

distributed

model

as

targeted
 by

CORBA.


RMI-based

application

architectures

are

tightly

coupled

because

of

the

connection-oriented

nature.

Hence,

achieving

high

scalability

in

such

an

application model

becomes

a

challenge.


RMI

does

not

provide

any

specific

session

management

support.


In

spite

of

some

of

its

limitations,

RMI

and

RMI-

IIOP

has

become

the

core

of

the

J2EE

architectural

model

due

to

its

widespread

acceptance

in

the

Java

distributed

computing

paradigm

and

rich features
36
)

 (
Microsoft

DCOM


The

Microsoft Component

Object
 Model

(COM)

provides

a

way

for

Windows-based

software

components

to

communicate

with

each

other

by

defining

a

binary

and

network

standard

in

a

Windows

operating

environment.


COM

evolved

from

OLE

(Object

Linking

and

Embedding),

which

employed

a

Windows

registry-based

object

organization

mechanism.


COM

provides

a

distributed

application

model

for

ActiveX

components.


As

a

next

step,

Microsoft

developed

the

Distributed

Common

Object

Model

(DCOM)

as

its

answer

to

the

distributed

computing

problem

in

the

Microsoft

Windows

platform.
37
)	 (
Microsoft

DCOM
Basic architectural

model

of

Microsoft

DCOM
38
)

 (
Microsoft

DCOM


DCOM
enables

COM

applications

to

communicate

with

each

other

using

an

RPC

mechanism,

which

employs

a
 DCOM
protocol on

the
wire.


DCOM

applies

a

skeleton

and

stub

approach

whereby

a

defined

interface

that

exposes

the

methods

of

a

COM

object

can

be

invoked

remotely

over

a

network.


The

client

application

will

invoke

methods

on

such

a

remote

COM

object

in

the

same

fashion

that

it

would

with

a

local

COM

object.


The

stub

encapsulates

the

network

location

information

of

the

COM

server

object

and

acts

as

a

proxy
 on

the

client

side.
39
)	 (
Microsoft

DCOM


The

servers

can
 potentially

host

multiple

COM
objects,

and

when

they

register

themselves

against

a

registry,

they

become

available

for

all

the

clients,

who

then

discover

them

using

a

lookup

mechanism.


DCOM
is

quite

successful

in

providing

distributed

computing

support

on

the

Windows

platform.


But,

it

is

limited

to

Microsoft

application

environments.


The

following

are

some

of

the

common

limitations

of

DCOM:


Platform

lock-in


State

management


Scalability


Complex

session

management issues
40
)

 (
Message-Oriented

Middleware


Although

CORBA,

RMI,

and

DCOM

differ

in

their
basic

architecture

and

approach,

they

adopted

a

tightly

coupled

mechanism

of

a

synchronous

communication

model

(request/response).


All

these

technologies

are

based

upon

binary

communication

protocols

and

adopt

tight

integration

across

their

logical

tiers,

which

is

susceptible

to

scalability

issues.


Message-Oriented

Middleware

(MOM)

is

based

upon

a

loosely

coupled

asynchronous

communication

model

where

the

application

client

does

not

need

to

know

its

application

recipients

or

its

method

arguments.


MOM

enables

applications

to

communicate
indirectly

using a

messaging
provider

queue.
41
)	 (
Message-Oriented

Middleware
A

typical

MOM-based

architectural

model
42
)

 (
Message-Oriented

Middleware


In

MOM-based

architecture,

applications

interacting

with

its

messaging

infrastructure

use

custom

adapters.


Client

applications

communicate

with

the

underlying

messaging

infrastructure

using

these

adapters

for

sending

and

receiving

messages.


For

reliable

message

delivery, messages

can

be


persisted

in

a

database/file

system

as

well.


Some

of

the

widely

known

MOM-based

technologies

are

SunONE

Message

Queue,

IBM

MQSeries,

TIBCO,
SonicMQ,

and

Microsoft

Messaging

Queue

(MSMQ).
43
)	 (
Message-Oriented

Middleware


The

Java

Platform

provides

a

Java-based
messaging

API
 (JMS-Java
Message

Service),

which

is

developed

as

part

of

the

Sun

Java

Community

Process

(JCP)

and

also

is

currently

part

of

the

J2EE

1.3 specifications.


All

the leading MOM

vendors

like

SunONE,

TIBCO,

IBM,

BEA,

Talarian,

Sonic,

Fiorano,

and

Spiritwave

support

the

JMS

specifications.


JMS
provides
Point-to-Point
and

Publish/Subscribe

messaging

models

with

the

following

features:


Complete

transactional

capabilities


Reliable

message

delivery


Security
44
)

 (
Message-Oriented

Middleware


Some

of

the

common

challenges

while
implementing
a
MOM-based
application

environment

have

been
the

following:


Most

of

the

standard

MOM

implementations

have

provided

native

APIs

for

communication

with

their

core

infrastructure.

This

has

affected

the

portability

of

applications

across

such

implementations

and

has

led

to

a

specific

vendor

lock-in.


The

MOM

messages

used

for
integrating

applications

are

usually

based

upon

a

proprietary
message
format
compliance.
without
any
standard


Adopting

a

JMS-based

communication

model

enables

a
standardized

way

to

communicate

with

a

MOM

provider

without

having
 to lock

in

to
any

specific

vendor

API.
45
)	 (
Challenges

in

Distributed

Computing


Distributed

computing

technologies

like

CORBA,
RMI,

and

DCOM

have

been

quite

successful

in

integrating

applications within

a

homogenous

environment

inside

a

local

area

network.


As

the

Internet

becomes

a

logical

solution

that

spans

and

connects the

boundaries of

businesses,
it

also

demands

the

interoperability

of

applications

across

networks.


Maintenance

of

various

versions

of

stubs/skeletons

in

the

client

and

server

environments

is

extremely

complex

in

a

heterogeneous

network

environment.


Quality

of Service

(QoS)

goals

like

Scalability,

Performance,

and

Availability

in

a

distributed

environment

consume

a

major

portion

of

the

application’s

development

time.
46
)

 (
Challenges

in

Distributed

Computing


Interoperability

of

applications

implementing
different

protocols

on

heterogeneous

platforms

almost

becomes

impossible.

For

example,

a

DCOM

client

communicating

to

an

RMI

server

or

an

RMI

client

communicating

to

a

DCOM server.


Most

of

these

protocols

are

designed

to

work

well
within

local

networks.


They

are

not

very

firewall

friendly

or

able

to

be

accessed
over

the

Internet.


The

biggest

problem

with

application

integration

with

this

tightly

coupled

approach

spearheaded

by

CORBA,

RMI,

and

DCOM

was

that

it

influenced

separate

sections

of

the

developer

community

who

were

already

tied

to

specific

platforms.
47
)	 (
Challenges

in

Distributed

Computing


There

was

no

big

effort

in

the community

to

come
 up

with

common

standards

that

focused

on

the

interoperability

between

these

diverse

protocols,

thus

ignoring

the

importance,

and

hence,

the

real

power

of

distributed

computing.


Therefore

to

overcome

the

above

challenges

we

need

an

alternative

technology,

which

still
has

all

the

existing

strengths

and

targets

to

solve

the

complexities

of

current systems.
48
)

 (
The

Role

of

J2EE

and

XML
in

Distributed

Computing


The

emergence

of

the

Internet

has

helped

enterprise

applications

to

be

easily

accessible

over

the

Web

without

having

specific
 client-side software

installations.


In

the

Internet-based

enterprise

application

model,

the

focus

was

to

move

the

complex

business

processing

toward

centralized

servers

in

the

back

end.


The

first

generation

of

Internet

servers

was

based

upon

Web

servers

that

hosted

static

Web

pages

and

provided

content

to

the

clients

via

HTTP

(HyperText

Transfer

Protocol).


HTTP

is

a

stateless

protocol

that

connects

Web

browsers

to

Web

servers,

enabling

the

transportation

of

HTML

content

to

the

user.
49
)	 (
The

Role

of

J2EE

and

XML
in

Distributed

Computing


With

the

high

popularity

and

potential of

this

infrastructure,

the

push

for

a

more

dynamic

technology

was

inevitable.


With

many

organizations

moving

their

businesses
to

the

Internet,

a

whole

new

category

of

business

models

like

business-to-business

(B2B)

and

business-to-consumer

(B2C)

came

into

existence.


This

evolution

lead

to

the

specification

of

J2EE

architecture,

which

promoted

a

much

more

efficient

platform

for

hosting

Web-based

applications.


J2EE

provides

a

programming

model

based

upon

Web

and

business

components

that

are

managed

by

the

J2EE

application
 server.
50
)

 (
The

Role

of

J2EE

and

XML
in

Distributed

Computing


The

power

of

Java

and

its

rich

collection

of

APIs

provided

the

perfect

solution

for

developing

highly

transactional,

highly

available

and

scalable

enterprise

applications.


Based

on

many

standardized

industry

specifications,

it

provides

the

interfaces

to

connect

with

various

back-end

legacy

and

information

systems.


J2EE

also

provides

excellent

client

connectivity

capabilities,

ranging

from

PDA

to

Web

browsers

to

Rich

Clients

(Applets,

CORBA

applications,

and

Standard

Java

Applications).


A

typical J2EE

architecture
is

physically

divided

in

to

three

logical

tiers,

which

enables

clear

separation

of

the

various

application

components

with

defined

roles

and

responsibilities.
51
)	 (
J2EE

application

architecture
52
)

 (
The

Role

of

J2EE

and

XML
in

Distributed

Computing


A

typical J2EE

architecture
is

physically

divided

in

to

three

logical

tiers,

which

enables

clear

separation

of

the

various

application

components

with

defined

roles

and

responsibilities

as

follows:


Presentation

tier.

The

Presentation

tier

is

composed

of

Web

components,

which

handle

HTTP

requests/responses,

Session

management,

Device

independent

content

delivery,

and

the

invocation

of

business

tier

components.


Application

tier.

The

Application

tier

(also

known

as

the

Business

tier)

deals with

the

core
business
logic

processing,

which

may

typically

deal

with

workflow

and

automation.

The

business

components

retrieve

data

from

the

information

systems

with

well-defined

APIs

provided

by

the

application

server.
53
)	 (
The

Role

of

J2EE

and

XML
in

Distributed

Computing


Integration

tier.

The

Integration
 tier

deals

with

connecting

and

communicating

to

back-end

Enterprise

Information

Systems

(EIS),

database

applications

and

legacy

applications,

or

mainframe

applications.


With

its

key

functionalities

and

provisions

for

partitioning

applications

into

logical

tiers,

J2EE

has

been

highly

adopted

as

the

standard

solution

for

developing

and

deploying

mission

critical

Web-

based

applications.


The

power

of

J2EE-based

applications

would

be

tremendous,

if

it

is

enabled

to

interoperate

with

other

potential

J2EE-deployed

applications.
54
)

 (
Emergence

of

the

Extensible

Markup
Language

(XML)


The

emergence

of

the

Extensible

Markup

Language

(XML)

for

defining

portable

data

in

a

structured

and

self-describing

format

is

embraced

by

the

industry

as

a

communication

medium

for

electronic

data

exchange.


Using

XML

as

a

data

exchange

mechanism

between

applications

promotes

interoperability

between

applications

and

also

enhances the

scalability

of

the

underlying

applications.


Combining

the potential

of

a
J2EE

platform

and

XML

offers

a

standard

framework

for

B2B

and

inter-

application

communication

across

networks.
55
)	 (
Emergence

of

the

Extensible

Markup
Language

(XML)


With

J2EE

enabling enterprise

applications

to

the

Internet

and

XML

acting

as

a

“glue”

bridges

these

discrete

J2EE-based

applications

by

facilitating

them

to

interoperate
with

each
 other.


XML,

with

its

incredible

flexibility,

also

has

been

widely

adopted

and

accepted

as

a standard

by

major

vendors

in

the

IT

industry,

including

Sun,

IBM,

Microsoft,

Oracle,

and

HP.


The

combination

of

these

technologies

offers

more

promising

possibilities

in

the

technology

sector

for

providing

a

new

way

of

application-to-

application

communication

on

the

Internet.


It

also

promotes

a

new

form

of

the

distributed

computing

technology

solution

referred

to

as

Web

services.
56
)

 (
The

Emergence

of

Web

Services


Today,

the

adoption

of

the

Internet

and

enabling

Internet-based

applications

has

created

a

world

of

discrete

business

applications,

which

co-exist

in

the

same

technology

space

but

without

interacting

with

each

other.


The increasing

demands of

the industry for

enabling

B2B,

application-to-application

(A2A),

and

inter-

process

application

communication

has

led

to

a

growing

requirement

for

service-oriented
architectures.


Enabling

service-

oriented

applications

facilitates

the

exposure

of

business

applications

as

service

components

enable

business

applications

from

other

organizations

to

link

with

these

services

for

application

interaction

and

data

sharing

without

human

intervention.
57
)	 (
The

Emergence

of

Web

Services


By

leveraging

this

architecture,

it

also

enables

interoperability

between

business

applications

and

processes.


By

adopting

Web

technologies,

the

service-oriented

architecture

model

facilitates

the

delivery

of

services

over

the

Internet

by

leveraging

standard

technologies

such

as

XML.


It

uses

platform-neutral

standards

by

exposing

the

underlying

application

components

and

making

them

available

to

any

application,

any

platform,

or

any

device,

and

at
 any

location.


Today,

this

phenomenon

is

well

adopted

for

implementation

and

is

commonly

referred

to

as

Web

services.
58
)

UNIT-II
 (
Introduction

to

Web

Services
1
)	 (
Introduction

toWeb

Services


Definition

of

WS


Basic

operational

model

of

WS


Tools

&

Technologies

enabling

WS


Benefits

of

WS


Challenges

of

using

WS
2
)

 (
What

Are

Web

Services?


Web

services

are

based

on

the

concept

of

service-

oriented

architecture

(SOA).


SOA

is

the

latest

evolution

of

distributed

computing,

which

enables

software

components,

including

application

functions,

objects,

and

processes

from

different

systems,

to

be

exposed

as

services.


Web

services

are

self-describing

and

modular

business

applications

that

expose

the

business

logic

as

services

over

the

Internet

through

programmable

interfaces

and using
Internet
 protocols

for

the

purpose

of

providing

ways

to

find,

subscribe,

and

invoke

those

services.


Based

on

XML

standards,

Web

services

can

be

developed

as

loosely

coupled

application

components

using

any

programming

language,

any

protocol,

or

any

platform.
3
)	 (
What

Are

Web

Services?


Based

on

XML

standards,

Web

services

can

be

developed

as

loosely

coupled

application

components

using

any

programming

language,

any

protocol,

or

any

platform.


This

facilitates

delivering

business

applications

as

a

service

accessible

to

anyone,

anytime,

at

any

location,

and using

any

platform.


Consider

the

simple

example

shown

in

Figure

next

where
a

travel

reservation

services

provider

exposes

its

business

applications

as

Web

services

supporting

a

variety

of

customers

and

application

clients.


These

business

applications

are

provided

by

different

travel

organizations

residing

at

different

networks

and

geographical
 locations.
4
)

 (
An
example

scenario

of

Web

services
5
)	 (
Typical Scenario


1.

The

Travel

service

provider

deploys

its

Web

services

by

exposing

the

business

applications

obtained

from

different

travel

businesses

like

airlines,

car-rental,

hotel

accommodation, credit card

payment,

and

so

forth.


2.

The

service

provider

registers

its

business

services

with

descriptions

using

a

public

or

private

registry.

The

registry

stores

the

information

about

the

services

exposed

by

the

service

provider.


3.

The

customer

discovers

the

Web

services

using

a

search

engine

or

by

locating

it

directly

from

the

registry

and

then

invokes

the

Web

services

for

performing

travel

reservations

and

other

functions

over

the

Internet

using

any

platform

or

device.
6
)

 (
5
)

 (
Typical Scenario


4.

In

the

case

of

large-scale

organizations,

the

business

applications

consume

these

Web

services

for

providing

travel

services

to

their

own

employees

through

the

corporate

intranet.


The

previous

example

provides

a

simple

scenario

of

how

an

organization’s

business

functionalities

can

be

exposed

as

Web

services

and

invoked

by

its

customers
using

a

wide

range
of

application

clients.


Web
 services

are

typically

implemented

based
on

open

standards

and

technologies

specifically

leveraging

XML.
7
)	 (
Building

blocks

for

Web

services


The

XML-based
standards

and

technologies,
 such

as


Simple

Object

Access

Protocol
(SOAP);


Universal

Description,

Discovery,

and

Integration

(UDDI);


Web

Services

Definition

Language
 (WSDL);

and


Electronic

Business

XML

(ebXML),

are

commonly
used

as

building

blocks
for

Web

services.


Web
 services

enable

businesses

to

communicate,

collaborate,

and

conduct

business

transactions

using

a

lightweight

infrastructure

by

adopting

an

XML-based

data

exchange

format

and

industry

standard

delivery

protocols.
8
)
 (
Using

XML

for

encoding

data

in
 a

B2B
Communication
9
)	 (
Characteristics

of

a

Web

services


Web

services

are

based

on

XML

messaging,

which

means

that

the

data

exchanged

between

the

Web

service

provider

and

the

user are
 defined

in

XML.


Web

services
 provide a

cross-platform

integration

of

business

applications

over

the

Internet.


To

build

Web

services,

developers

can

use

any

common

programming

language,

such

as

Java,

C,

C++,

Perl,

Python,

C#,

and/or

Visual

Basic,

and

its

existing

application

components.


Web

services

are

not

meant

for

handling

presentations

like

HTML

context—it

is

developed

to

generate

XML

for

uniform

accessibility

through

any

software

application,

any

platform,

or

device.
10
)

 (
Characteristics

of

a

Web

services


Because

Web

services

are based

on

loosely

coupled
application

components,

each

component

is

exposed

as
a

service

with

its unique

functionality.


Web

services

use

industry-standard

protocols

like

HTTP,

and

they

can
be

easily

accessible through

corporate

firewalls.


Web

services

can

be
 used

by many

types of

clients.


Web

services

vary

in

functionality

from

a

simple

request

to

a

complex

business

transaction

involving

multiple

resources.


All

platforms

including

J2EE,

CORBA,

and

Microsoft
.NET

provide

extensive

support

for

creating

and

deploying

Web

services.


Web

services

are

dynamically

located

and

invoked

from

public

and

private

registries

based

on

industry

standards

such

as

UDDI
and

ebXML.
11
)	 (
Why

Use

Web

Services?


Traditionally,

Web

applications

enable

interaction
between

an

end

user
and

a
Web

site.


But

Web

services

are

service-oriented

and

enable

application-to-

application

communication

over

the

Internet

and

easy

accessibility

to

heterogeneous

applications

and

devices.


The

following

are

the

major

technical reasons

for

choosing

Web services
 over

Web
 applications:


Web

services

can

be

invoked

through

XML-based

RPC

mechanisms

across

firewalls.


Web

services

provide

a

cross-platform,

cross-

language

solution

based

on

XML

messaging.
12
)

 (
Why

Use

Web

Services?


Web

services

facilitate

ease

of

application

integration using a

lightweight

infrastructure

without

affecting

scalability.


Web

services

enable

interoperability

among

heterogeneous

applications.
13
)	 (
Basic

Operational

Model

of

WSs


Web

services

operations

can
be

conceptualized

as

a

simple

operational

model

that

has

a

lot

in

common

with

a

standard

communication model.


Operations

are

conceived

as

involving

three

distinct

roles

and

relationships

that

define

the

Web

services

providers

and

users.


These

roles

and

relationships

are
defined

as

follows:


Service

provider.

The
 service
provider
 is
responsible

for

developing

and

deploying

the

Web

services.

The

provider

also

defines

the

services

and

publishes

them

with

the

service broker.
14
)

 (
Basic

Operational

Model

of

WSs


Service

broker.

The

service

broker

(also

commonly

referred

to

as

a

service

registry)

is

responsible

for

service

registration

and

discovery

of

the

Web

services.

The

broker

lists

the

various

service

types,

descriptions,

and

locations

of

the

services

that

help

the

service

requesters

find

and

subscribe

to

the

required

services.


Service

requestor.

The

service

requestor

is

responsible

for

the

service

invocation.

The
 requestor

locates

the

Web

service

using

the

service

broker,

invokes

the

required

services,

and

executes

it

from

the

service

provider.
15
)	 (
Basic

Operational

Model

of

WSs
Web

services

operational

model,

showing

roles

and
relationships
16
)

 (
Core

Web

Services

Standards


The

five

core

Web

services

standards

and

technologies

for

building

and

enabling

Web

services

are

as
follows:


XML


SOAP


WSDL


UDDI

and


ebXML


An

overview

of

each

is

presented

as

follows
17
)	 (
Extensible

Markup

Language

(XML)


In

February

1998,

the

Worldwide Web

Consortium

(W3C)

officially

endorsed

the

Extensible

Markup

Language

(XML)

as

a

standard
 data format.


XML

uses

Unicode,

and

it

is

structured

self-

describing

neutral

data

that

can

be

stored

as

a

simple

text

document

for

representing

complex

data

and

to

make it

readable.


Today,

XML

is

the

de

facto

standard

for

structuring

data,

content,

and

data

format

for

electronic

documents.


In

the

core

of

the

Web

services

model,

XML

plays

a

vital

role

as

the

common

wire

format

in

all

forms

of

communication.


Refer

XML

at

www.w3c.org/XML/
18
)

 (
Simple

Object

Access

Protocol
 (SOAP)


Simple

Object

Access

Protocol,

or

SOAP,

is

a

standard

for

a

lightweight

XML-based

messaging

protocol.


It

enables

an

exchange

of

information

between

two

or

more

peers

and

enables

them

to communicate

with

each

other

in
 a

decentralized, distributed

application

environment.


Like

XML,

SOAP

also

is

independent

of

the

application

object

model,

language,

and

running

platforms

or

devices.


SOAP is

endorsed

by

W3C

and

key
 industry

vendors

like

Sun

Microsystems,

IBM,

HP,

SAP,

Oracle,

and

Microsoft.


Refer

SOAP

at

www.w3c.org/TR/SOAP/
19
)	 (
Web

Services

Definition

Language

(WSDL)


The

Web

Services

Definition Language

(WSDL)

standard

is

an
 XML

format

for

describing

the

network

services

and

its

access

information.


It

defines

a binding

mechanism

used

to

attach

a

protocol, data format,

an

abstract

message,

or

set of

endpoints

defining

the

location

of

services.


In

the

core

of

the

Web

services

model,

WSDL

is

used

as

the

metadata

language

for

defining

Web

services

and

describes how

service

providers

and

requesters

communicate

with

one

another.


WSDL

describes

the

Web

services

functionalities

offered

by

the

service

provider,

where

the

service

is

located,

and

how

to

access

the

service


Refer

WSDL

at

www.w3c.org/TR/wsdl/
20
)
 (
UDDI


Universal

Description,

Discovery,

and

Integration,

or

UDDI,

defines

the

standard

interfaces

and

mechanisms

for

registries

intended

for

publishing

and

storing

descriptions

of

network

services

in

terms

of

XML

messages.


It

is

similar

to

the

yellow

pages

or

a

telephone

directory

where

businesses

list

their

products

and

services.


Web

services

brokers

use

UDDI

as

a

standard

for

registering
the

Web service

providers.


By

communicating

with

the

UDDI

registries,

the

service

requestors

locate

services

and

then

invoke

them.


Refer

UDDI
 at

www.uddi.org/
21
)	 (
Electronic

Business

XML

(ebXML)


ebXML

defines

a

global

electronic

marketplace

where

enterprises

find

one

another

and

conduct

business

process
collaborations

and

transactions.


It

also

defines

a

set

of

specifications

for

enterprises

to

conduct

electronic

business

over

the

Internet

by

establishing

a

common

standard

for

business

process

specifications,

business

information

modeling,

business

process

collaborations,

collaborative

partnership

profiles,

and

agreements

and

messaging.


ebXML

is

an

initiative

sponsored

by

the

United

Nations

Center

for

Trade

Facilitation

and

Electronic

Business

(UN/CEFACT)
22
)

 (
Electronic

Business

XML

(ebXML)


ebXML

Business

Process

Service

Specifications

(BPSS)

enable

business

processes

to

be

defined.


ebXML

CPP/CPA

enables

business

partner

profiles

and

agreements

to

be

defined,

and

it

provides

business

transaction

choreography.


ebXML

Messaging

Service

Handler

(MSH)

deals

with

the

transport,

routing,

and

packaging

of

messages,

and

it

also

provides

reliability

and

security,

a

value

addition

over

SOAP.


ebXML

registry

defines

the

registry

services,

interaction

protocols,

and

message

definitions,

and

ebXML

repository

acts

as

storage

for

shared

information.
23
)	 (
Electronic

Business

XML

(ebXML)


The

ebXML

registries

register

with

other

registries

as

a

federation, which

can

be

discovered

through

UDDI.

This

enables

UDDI

to

search

for

a

business

listing

point

to

an

ebXML

Registry/Repository.


ebXML

Core

components

provide

a

catalogue

of

business

process

components

that
provide

common

functionality

to

the

business

community.


Examples

of

such

components

are

Procurement,

Payment,

Inventory,

and

so

on.


For
more

information

about

ebXML, go

to

the official

Web

site

of

ebXML

standards

at

www.ebxml.org.
24
)

 (
Other
 Industry

Standards

Supporting

WSs


Web

Services

Choreography

Interface

(WSCI)


Web

Services

Flow

Language

(WSFL)


Directory

Services

Markup

Language

(DSML)


XLANG


Business

Transaction

Protocol

(BTP)


XML

Encryption

(XML

ENC)


XML

Key

Management

System

(XKMS)


XML

Signature
(XML

DSIG)


Extensible

Access

Control

Markup

Language

(
X
A
C
M
L
)


Security

Assertions

Markup

Language

(SAML)
25
)	 (
Known

Challenges

in

Web

Services


Web

services

present

some

key

challenges

associated

with

the

mission-critical

business

requirements.


These

challenges

need

to

be

addressed

before

the

services

are

fully

implemented.

Some

of

the

key

challenges

are

as

follows:


Distributed

transactions.

If

the

environment

requires

distributed

transactions

with

heterogeneous

resources,

it

should

be

studied

and

tested

with

standard

solutions

based

on

BTP,

WS-Transactions,

and

WS-Coordination.
26
)

 (
Known

Challenges

in

Web

Services


Quality
of

Service (QoS).
In

case

of

a

mission-critical
solution,

the

service

providers

must

examine

the

reliability

and

performance of

the

service

in

peak

load

and

uncertain

conditions

for

high

availability.


The

exposed

infrastructure

must

provide

load

balancing,

and

failover

and

fault

tolerance,

to

resolve

these

scenarios.


Security.

Web

services

are exposed

to

the

public

using

http-based

protocols.


As

Web

services
is
 publicly available,
it

must

be

implemented

using

authentication

and

authorization

mechanisms

and

using

SSL-enabling

encryption

of

the

messages

for

securing

the

usage.


Adopting

open

security

standards

like

SAML,

XML

Encryption,

XML

Signature,

or

XACML

may

be

a

solution.
27
)	 (
Web

Services

Software

and

Tools


The

following

is

a
list

of

the

most

popular

software

solutions

commercially

available

for

implementing

Web

services.


BEA

Systems

Products


Cape

Clear

Products


IBM
Products


IOPSIS

Products


Oracle

Products


Sun

Products


Systinet

Products
28
)

 (
Web

Services

Strategies

from

Industry
Leaders:

An

Overview


Sun

ONE

(Sun

Open

Net

Environment):Sun

ONE

is

Sun’s

open

standards-based

software

vision,

architecture,

platform,

and

solution

for

building

and

deploying

Services

on

Demand-based

solutions

that

support the

development

and deployment

of
Web

services.


IBM

e-Business:IBM

e-business

is

IBM’s

conceptual

architecture

and

open

standards-based

product

offering

for

the

development

and

deployment

of

Web

services.


Microsoft

.NET:Microsoft

.NET

defines

the

framework

and

the

programming

model

of

the

.NET

platform

for

developing

and

deploying

standards-

based

Web

services

and

all

types

of

applications.
29
)	 (
Key

Benefits
 of

Web

Services


Provides

a

simple

mechanism

for

applications

to

become

services

that

are

accessible

by

anyone,

anywhere,

and

from

any

device.


Defines

service-based

application

connectivity

facilitating

EAI,

and

intra-enterprise

and

inter-

enterprise

communication.


Defines

a

solution

for

businesses,

which

require

flexibility

and

agility

in

application-to-application

communication

over

the

Internet.


Enables
 dynamic

location

and

invocation

of

services

through

service

brokers

(registries).


Enables

collaboration

with

existing

applications

that

are

modeled

as

services

to

provide

aggregated

Web

services.
30
)

UNIT-III
 (
Web

Services

Architecture
1
)	 (
Web

Services

Architecture


WS

Architecture

&

Characteristics


C
o
re

Building

Blocks

of

WS


Standard

Technologies


WS

Communication


Basic

steps

of

implementing

WS


Developing
applications
web
services
enabled
2
)

 (
Web

Services

Architecture


The

basic

principles

behind

the

Web

services

architecture

are

based

on

SOA

and

the

Internet

protocols.


It

represents

a

composable

application

solution

based

on

standards

and

standards-based

technologies.


This

ensures

that

the

implementations of

Web

services

applications

are

compliant

to

standard

specifications,

thus

enabling

interoperability

with

those

compliant

applications.


Some

of

the

key

design

requirements

of

the

Web

services

architecture

are

the

following:
3
)	 (
Web

Services

Architecture


To

provide

a

universal

interface and

a consistent

solution

model

to

define

the

application

as

modular

components,

thus

enabling

them

as

exposable

services.


To

define

a

framework

with

a

standards-based

infrastructure

model

and

protocols

to

support

services-based

applications

over

the

Internet


To

address

a

variety

of

service

delivery

scenarios

ranging

from

e-business

(B2C),

business-to-

business

(B2B),

peer-to-peer

(P2P),

and

enterprise

application

integration

(EAI)-based

application

communication
4
)

 (
Core

Building

Blocks


Services

container/runtime

environment.

The

services

container

acts

as

the

Web

services

runtime

environment

and

hosts

the

service

provider.


Services

registry.

The

services

registry

hosts

the

published

services

and

acts

as

a

broker

providing

a

facility

to

publish

and

store

the

description

of

Web

services

registered

by

the

service

providers.


Services

delivery.

It

acts

as

the

Web

services

client

runtime

environment

by

looking

up

the

services

registries

to

find

the

required

services

and

invoking

them

from the

service

provider.


WSDL.

This

resides

in

the

services

container

and

provides

a

standardized

way

to

describe

the

Web

services

as

a

service
description.
6
)
Web Services Architectur
To enable distributable modular applications as a centralized and decentralized application environment that supports boundary-less application communication for inter-enterprise and intra-enterprise application connectivity.
To enable the publishing of services to one or more public or private directories, thus enabling potential users to locate the published services using standard-based mechanisms that are defined by standards organizations.
To enable the invocation of those services when it is required, subject to authentication, authorization, and other security measures.

 (
Core

Building

Blocks


UDDI.

This

provides

a

standard

mechanism

for

publishing

and discovering

registered

Web

services,

and

it

also

acts

as

the registry and

repository

to

store

WSDL-based

service

descriptions.


Web

services

are

accessed

using

standard

Internet

protocols

and

XML—the

Web

services

architecture

forms

the

standard

infrastructure

solution

for

building

distributed

applications
 as

services that

can

be

published,

discovered,

and

accessed

over

the

Internet.
7
)	 (
Standards

and

Technologies


Simple

Object

Access

Protocol
(SOAP)


The

Simple

Object

Access

Protocol,

or

SOAP,

plays

the

role

of

the

messaging

protocol

for

exchanging

information between the

service

provider

and the

service

requestor.

It

consists

of

the

following:


SOAP

Envelope.

It

describes

the

message,

identifying

the

contents

and

the

envelope’s

processing

information.


SOAP

Transport.

It

defines

the

bindings

for

the

underlying

transport

protocols

such

as

HTTP

and

SMTP.
8
)

 (
Standards

and

Technologies


SOAP

Encoding.

It

defines

a

set

of

encoding

rules

for

mapping

the

instances

of the

application-specific

data

types

to

XML

elements.


SOAP

RPC

conventions.

It

defines

the

representation

of

the

RPC

requests

and

responses.

These

SOAP

requests

and

responses

are

marshaled

in

a

data

type

and

passed

in
to

a

SOAP

body


The

following

Listing

represents

a

SOAP

message

using

an

HTTP

post

request

for

sending

a

getBookPrice()

method

with

<bookname>

as

an

argument

to

obtain

a
 price

of

a

book.
9
)	 (
SOAP message

using

HTTP
10
)

 (
Standards

and

Technologies


Web

Services

Description

Language

(WSDL)

:is

an

XML

schemabased

specification

for

describing

Web

services

as

a

collection

of

operations

and

data

input/output

parameters as

messages.


WSDL

also

defines

the

communication

model

with

a

binding
mechanism

to
attach

any

transport

protocol,

data

format, or

structure

to
an

abstract

message,

operation,

or

endpoint.


The

following

Listing

shows

a

WSDL

example

that

describes

a

Web

service

meant

for

obtaining

a

price

of

a

book

using

a
 GetBookPrice

operation.
11
)	 (
A

WSDL
document

describing

a

Service
12
)

 (
Standards

and

Technologies


Universal

Description,

Discovery,

and

Integration

(UDDI):

defines

a

mechanism

to

register

and

categorize

Web

services

in

a

general-purpose

registry

that

users

communicate

to

in

order

to

discover

and

locate

registered

services.


ebXML:

provides

a

standard

framework

for

building

an

electronic

marketplace

by

enabling

the

standardization

of

business

processes,

business

partner

profiles,

and

partner

agreements.
13
)	 (
WS

Communication


In

Web

services

architecture,

depending

upon

the

functional

requirements,

it

is

possible

to

implement

the

models

with:


RPC-based

synchronous

or


messaging-based
synchronous/asynchronous

communication

models.


These

communication

models

need

to

be

understood

before

Web

services

are

designed

and

implemented.
14
)

 (
WS

Communication


R
P
C
-
B
a
se
d

C
o
mm
un
i
ca
t
i
o
n

M
od
e
l
l
:
:

d
e
f
i
n
e
s

a

request/response-based

synchronous

commn.


When

the

client

sends

a request,

the

client

waits

until

a

response

is

sent

back

from

the

server

before

continuing

any

operation.


Typical

to

implementing

CORBA

or

RMI

communication,

the

RPC-based

Web

services

are

tightly

coupled

and

are

implemented

with

remote

objects

to

the

client

application.


The

clients

have

the
 capability
 to

provide

parameters

in

method

calls
to

the

Web

service

provider.


Then,

clients
 invoke

the

Web

services

by

sending


parameter

values

to

the

Web

service

provider

that

executes

the required

methods,

and

then

sends
back

the

return
values.
15
)	 (
WS

Communication
RPC-based

communication

model

in

Web

services
16
)

 (
WS

Communication


M
essa
g
i
ng
-
B
a
s
e
d

C
o
mm
un
i
c
a
t
i
o
n

M
od
e
l
l
:
:

d
e
f
i
n
e
s

a

loosely
coupled
and
document-driven

communication.


The

service

requestor

invoking

a

messaging-based

service

provider

does

not

wait

for

a
 response.


the

client

service

requestor

invokes

a

messaging-

based

Web

service;

it

typically

sends

an

entire

document

rather

than

sending

a

set
 of

parameters.


The

service

provider

receives

the

document,

processes

it,

and

then

may

or

may

not

return

a

message.


Depending

upon

the

implementation,

the

client

can

either

send

or

receive

a

document

asynchronously

to

and

from

a

messaging-based

Web

service,

but

it

cannot

do

both

functionalities

at

an
 instant.
17
)	 (
WS

Communication
Messaging-based

communication

model
18
)

 (
Implementing

Web

Services


The

process

of

implementing

Web

services

is

quite

similar

to

implementing

any

distributed

application

using

CORBA

or

RMI.


However,

in

Web

services,

all

the

components

are

bound

dynamically

only

at

its

runtime

using

standard

protocols.


The

basic

steps

of

implementing

Web

services

are

as

follows:


1.

The

service

provider

creates

the

Web

service

typically

as

SOAP-based

service

interfaces

for

exposed

business

applications.


2.

The

service
provider

then

registers the

WSDL-

based

service

description

with

a

service

broker,

which

is typically
a

UDDI

registry.
19
)	 (
Implementing

Web

Services


3.

The

UDDI

registry

then

stores

the

service

description

as

binding templates

and

URLs

to

WSDLs

located in

the

service

provider

environment.


4.

The

service

requestor

then

locates

the

required

services

by

querying

the

UDDI

registry.

The

service

requestor

obtains

the

binding

information

and

the

URLs

to

identify

the

service

provider.


5.

Using

the

binding

information,

the

service

requestor

then

invokes

the

service

provider

and

then

retrieves

the

WSDL

Service

description

for

those

registered

services.


6.

Finally,

the

service

requestor

communicates

with

the

service

provider

and

exchanges

data

or

messages

by

invoking

the

available

services

in

the

service

container.
20
)

 (
Process

steps

involved

in
implementing

Web

services
21
)	 (
Developing

WS-Enabled

Applications


The

implementation

steps

generally

involved

in

developing

Web

services

solutions

by

exposing

back-end

business

applications

are

as

follows:


1.

The

potential

business

component

of

the

underlying

application

will

be

encapsulated

as

service-oriented

interfaces

using

SOAP

and

then

exposed

as

Web

services

by

deploying

them

in

a

Web

services

service

container

or

a

SOAP

runtime

environment.


2.

WSDL-based

service

descriptions

will

be

generated

and

then

reside in

a
 service
container.


The

service

requester

finds

the

services

using

the

discovery

mechanisms

(registry

API)
 and

obtains

the

service

description
 and its

provider

location

URL.
22
)

 (
Developing

WS-Enabled

Applications


4.

To

invoke

the

services

exposed

by

the
service

provider,

the

service

requestor

(service

delivery

environment)

is

required

to

implement

SOAP-based

client
 interfaces

according

to the

service

description

defined

in

the

WSDL.


Figure

below

represents

a

typical

Web

services

implementation model

providing
 service-oriented

interfaces

supporting

a

variety

of

back-end

application

environments.
23
)	 (
Exposing

applications

through

Web

services
24
)

 (
Building

Web

Services

in

the

J2EE
Environment


The

following

steps

are

commonly

involved

in
creating

Web

services

from

a

J2EE-based

application

component:


1.

Select

a

Web

services

platform

provider,

which

provides

a

consistent

platform

for

building

and

deploying

Web services

over

the

J2EE

applications.


2.

Define

a

Web

service-enabled

application

and

its

behavior.


a.

Select

the

potential

J2EE

components

(for

example,

EJBs,

Servlets,

and

JMS

applications)

that

are

required

to

be

exposed

as

services

or

are

using

the

existing

services.
25
)	 (
Building

Web

Services

in

the

J2EE
Environment


b.

Choose

the

communication

model

(RPC-based
synchronous

or

messaging-based

asynchronous)

depending

upon

the

required

behavior

of

the

underlying

components

(for

example,

Session

or

Entity

EJBs

using

RPC-based

communication

or

JMS

applications

using

messaging-based

communication).


c.

Ensure

that

the

service

uses

only

built-in/custom

data

types

mapping

for

XML

and

Java

supported

by

the

Web

services

container.

This

applies

only

to

RPC-based

communication

models.


3.

Develop

the

Web

service
by

writing

the

interfaces

required

for

accessing

the

exposed
components

(for

example,

EJBs,

Servlets,

and

JMS

applications).
26
)

 (
Building

Web Services

in

the

J2EE
Environment


a.

Develop

the

potential

J2EE

component

(for
example,

EJBs,

Servlets,

and

JMS

applications)

that

are

required

and

deploy

them

in

a

J2EE-compliant

container.

Ensure

that

the

data

types

used

by

the

components

are

supported

in

the

XML/Java

mappings

defined

by

the

provider.


b.

Implement

the
 SOAP

message

handlers.


4.

Assemble

the

required

components

into

a

required

structure

(defined

by

the

Web

services

platform

provider), additionally

creating

the

deployment

descriptors

for

the

services

(as

defined

by

the

Web

services

platform

provider)

and

package

them

as
 a

deployable

EAR.
27
)	 (
Building

Web Services

in

the

J2EE
Environment


a.

Most

Web

service

platform

vendors

provide

utility
tools

to

generate

Web

services

components

(SOAP

interfaces)

by

introspecting

the

components

(especially

its

methods

and

values)

and

mapping

them

to

its

supported

data

types.


b.

Also

it

is

important

to

note,

the

upcoming

release

of

the

J2EE

1.4
 specification

is
expected

to

provide

a

complete

J2EE-based

Web

services

platform

and

would

enable

the

deployment

of

J2EE

components

as

Web services.


5.

Deploy

the

Web

service

components

in

the

Web

services

container

and

make

them

available

to

its

remote

clients

(based

on

the

required

protocol

bindings

such

as

HTTP

and

SMTP)
28
)

 (
Building

Web Services

in

the

J2EE
Environment


6.

Create

test

clients

for

invoking

the

deployed

Web
services.


7.

Register

and

publish

your

Web

service

in

a

UDDI

registry,

in

case

you

require

enabling

the
service

available

by

searching

public/private

UDDI

registries

for

Web services.


These

steps

are

common.

They

are

based

on

the

implementation

available

from

most

popular

Web

services

platform

vendors.


Perhaps

in

the

future,

implementation

may

vary,

based

on

emerging standards.
29
)	 (
J2EE

and
 Java Web

Services

Developer
Pack

(JWSDP)


Sun

Microsystems
as

part

of its Java

community
process

has

already

released

its

Java

API

for

Web

Services

for

the

developer

community

as

the

Java

Web

Services

Developer

Pack

(JWSDP).


JWSDP 1.0
 provides a

one-stop

Java
 API
solution

for

building

Web

services
using a

Java

platform.


The

key
API

components include

the

following:


Java

API

for XML

Messaging

(JAXM)


Java

API

for

XML

Processing

(JAXP)


Java

API

for XML

Registries

(JAXR)


Java

API

for XML

Binding

(JAXB)


Java

API

for
XML-Based

RPC

(JAX-RPC)


Java

WSDP

Registry

Server

(JWSDP)


Java

Server

Pages

Standard
 Tag

Library

(JSTL)
30
)

 (
Exposing

J2EE

Components
as
 Web

Services


The

J2EE

environment

delivers

platform-

independent Java

component-based

applications

providing

a

multi-tiered

distributed

application

model

with

several

advantages

like

security,

scalability,

administration

tools,

portability

between

vendor

implementations,

and

reliability

of

deployed

applications.


In

general,

it

defines

the

following

components

residing

in

different logical

tiers:


JavaServer

Pages

(JSP)

and

Java

Servlet-based

components
act
as

Web

components

running

on

the

Web/Servlet
 container

of

the

J2EE

server.


Enterprise

JavaBeans

(EJB)-based

components

act

as

business

or

persistence

components

running

on

the

EJB
 container

of

the

J2EE

server.
31
)	 (
Exposing

J2EE

Components
as
 Web

Services


JDBC

(Java

Database

connectivity)

and

J2EE

connector

architecturebased

components

act

as

the

integration
 tier

of

the

J2EE

server

for

integrating

database

applications

and

enterprise

information

systems.


The

key

differences

between

J2EE

components

and

traditional

Java

applications

is

that

J2EE

components

are

assembled

and

deployed

into

a

J2EE

application

server

in

compliance

with

the

J2EE

specification.


These

components

are

managed

by

J2EE

server

system

services

such

as

synchronization,

multithreading,

and

connecting

pooling.
32
)

 (
Exposing

J2EE

Components
as
 Web

Services


Additionally,

the

J2EE

server

implementation

also

provides capabilities like clustering,

transaction

coordination,

messaging,

and

database

connection

pooling.


developing

Web

services

from

J2EE-based

applications

requires the implementation

of

components

using

J2EE

component

APIs

(such

as

EJBs

and

servlets),

then

packaging

and

deploying

them

in

a

J2EE

container

environment

as

target

enterprise

applications.


In

a

typical

scenario,

exposing

a

J2EE-based

application

component

as

Web

services

involves
 the

steps

in

the

following

list:
33
)	 (
Exposing

J2EE

Components
as
 Web

Services


STEPS

FOR
THE
 SERVICE

PROVIDER


1.

The

potential

J2EE

component

deployed

in

an

application

server

environment

will

be

encapsulated

as

a

service-oriented

interface

using

SOAP

and

then

deployed

in

a

Web
 services

runtime

environment.


2.

WSDL-based

service

descriptions

are

generated

and

then

reside

in

the

services runtime environment.

The

service

requestor

clients

create

SOAP-based

client

interfaces

using

the

WSDL-based

descriptions.


3.

Using

registry

APIs,

WSDLs

are

used

for

publishing

the

services

in

a

public/private

UDDI

registry.
34
)

 (
Exposing

J2EE

Components
 as

Web Services


STEPS

FOR

THE

SERVICE

REQUESTOR


1.

The

service

requestor

clients

create

SOAP-based

client

interfaces

using

the

WSDL-based

descriptions

exposed

by

the

service

provider.


2.
 The service

requestor
may

choose to

use
 any

language

for

implementing

the

client

interfaces,

but

it

must

support

the

use

of

SOAP

for

communication.


3.
 These
client

interfaces then

are

used

to

invoke the

service

provider-deployed

services.
35
)	 (
Developing
 Web

Services

Using

J2EE:

An
Example


In

this

example,

we

will

be

implementing

the

J2EE
components

using

a

J2EE

application

server

and

will

expose

them

as

service

interfaces

using

its

service

container

for

the

service

provider.


We

also
 will

build

the

client

invocation

interfaces

using

a
SOAP

provider.


The

ACME

Web

Services

Company

is

a

Web-based

services

provider

that

sells

computer

products

by

delivering

XML-based

data

over

the

Internet

as

Web

services to

its partners

and

resellers

by

exposing

its

business

functions.


Catalog

of computer

system

products

to

retail
sellers


Product

specific

information


Selling

computer

systems

and

products

to

resellers
36
)

 (
Developing

Web

services

using

a
 J2EE

environment
37
)	 (
Sequence

diagram

illustrating

flow

of

events
38
)

 (
Class

diagram

for

the

J2EE

components
39
)	

	

 (
12
)
UNIT-IV
 (
Core

Fundamentals

of

SOAP
1
)	 (
Core

Fundamentals

of

SOAP


SOAP

Message

Structure


SOAP

Encoding


SOAP

Message

exchange

models


SOAP

Communication

&

Messaging


SOAP

SEcurity
2
)

 (
What

is

SOAP?


With

the

emergence

of

Web

services,

SOAP

has

become

the

de

facto

communication

protocol

standard

for

creating

and

invoking

applications

exposed

over

a

network.


SOAP

is

similar

to

traditional

binary

protocols

like

IIOP

(CORBA)

or

JRMP

(RMI),

but

instead

of

using

a

binary

data

representation,

it

adopts

text-based

data

representation

using

XML.


Using

XML

notation,
SOAP
 defines

a lightweight

wire

protocol

and

encoding

format

to

represent

data

types,

programming

languages,

and

databases.
3
)	 (
What

is
SOAP?


SOAP

can

use

a

variety

of

Internet

standard

protocols

(such

as

HTTP

and

SMTP)

as

its

message

transport,

and

it

provides

conventions

for

representing

communication

models

like

remote

procedural calls

(RPCs)

and

document-driven

messaging.


This

enables

inter-application

communication
in

a

distributed

environment

and

interoperability

between

heterogeneous

applications

over

the

networks.


With

its

widespread

acceptance

by

leading

IT

vendors

and

Web

developers,

SOAP

is

gaining

popularity

and

adoption

in

most

popular

business

applications

for

enabling

them

as Web services.
4
)

 (
The

Emergence

of

SOAP


SOAP

initially

was

developed

by

DevelopMentor,

Inc.,

as

a

platform-independent

protocol

for

accessing

services,

objects

between

applications,

and

servers
 using

HTTP-based

communication.


SOAP

used

an

XML-based

vocabulary

for

representing

RPC

calls

and

its

parameters

and

return

values.


In

1999,

the

SOAP

1.0

specification

was

made

publicly

available

as

a

joint

effort

supported

by

vendors

like

RogueWave,

IONA,

ObjectSpace,

Digital

Creations,

UserLand,

Microsoft,

and

DevelopMentor.


To

find

out

the

current

status

of

the

SOAP

specifications

produced

by

the

XML

Protocol

Working

Group,

refer

to

the

W3C

Web

site

at

www.w3c.org.
5
)	 (
Understanding

SOAP

Specifications


The

SOAP

specifications

define

the

following:


Syntax

and

semantics

for

representing

XML

documents

as

structured

SOAP

messages


Encoding

standards

for

representing

data

in

SOAP

messages


A

communication

model

for

exchanging

SOAP

messages


Bindings
 for

the underlying

transport

protocols
such

as
 SOAP

transport


Conventions

for

sending

and

receiving

messages
using

RPC

and

messaging


Note

that

SOAP

is

not

a

programming

language

or

a

business

application

component

for

building

business

applications.
6
)

 (
7
)

 (
Understanding

SOAP

Specifications


SOAP

is

intended

for

use

as
 a

portable

communication

protocol

to

deliver

SOAP

messages,

which

have

to

be

created

and

processed

by

an

application.


In

general,

SOAP

is

simple and

extensible

by

design,

but

unlike

other

distributed

computing

protocols,

the

following

features

are

not

supported

by

SOAP:


■

Garbage

collection


■

Object

by

reference


■

Object

activation


■

Message

batching
7
)	 (
Anatomy

of

a
SOAP

Message


SOAP

defines

the

structure

of

an
 XML

document,

rules,

and

mechanisms

that

can

be

used

to

enable

communication

between

applications.


It

does

not

mandate

a

single

programming

language

or

a

platform,

nor

does

it

define

its

own

language

or

platform.


The

example

shown

in

Listing

below

is

a

SOAP

request/response

message

for

obtaining

book

price

information

from a

book

catalog

service

provider.


The
SOAP

request

accepts

a

string

parameter

as
 the

name

of

the

book

and

returns

a

float

as

the

price

of

the

book

as
 a

SOAP

response.
8
)

 (
SOAP

request

message
9
)	 (
SOAP

response

message
10
)

 (
Anatomy

of

a
SOAP

Message


Usually
a

SOAP
message

requires

defining

two

basic

namespaces:

SOAP

Envelope and

SOAP

Encoding.


The

following

list

their

forms

in

both

versions

1.1

and

1.2

of
SOAP.


SOAP

ENVELOPE


■

http://schemas.xmlsoap.org/soap/envelope/

(SOAP

1.1)


■

http://www.w3.org/2001/06/soap-envelope

(SOAP

1.2)


SOAP

ENCODING


■

http://schemas.xmlsoap.org/soap/encoding/

(SOAP

1.1)


■

http://www.w3.org/2001/06/soap-encoding

(SOAP

1.2)
11
)	 (
Anatomy

of

a
SOAP

Message


The

structural

format
of

a

SOAP

message
 (as

per

SOAP

version

1.1
 with

attachments)

contains the

following

elements:


■

Envelope


■

Header

(optional)


■

Body


■

Attachments

(optional)
12
)

 (
Structure

of
 a

SOAP

message

with

attachments
13
)	 (
Anatomy

of

a
SOAP

Message


SOAP

Envelope:

The

SOAP

envelope

is

the

primary

container

of

a

SOAP

message’s

structure

and

is

the

mandatory

element

of

a
 SOAP

message.


It

is

represented

as

the

root

element

of

the

message

as

Envelope.


It

is

usually

declared

as

an

element

using

the

XML

namespace
http://schemas

.xmlsoap.org/soap/envelope/.
14
)

 (
SOAP

Envelope

element
15
)	 (
Anatomy

of

a
SOAP

Message


SOAP

Header:

The

SOAP

header

is

represented

as

the

first

immediate

child

element

of

a

SOAP

envelope,

and

it

has

to

be

namespace

qualified.


In

addition,

it

also

may
 contain

zero

or
 more
 optional

child

elements,

which

are

referred

to

as

SOAP

header

entries.


The

SOAP

encodingStyle

attribute

will

be

used

to

define

the encoding

of

the data
 types
used

in

header

element

entries.


The

SOAP

actor

attribute

and

SOAP

mustUnderstand

attribute

can

be

used

to

indicate

the

target

SOAP

application

node (Sender/Receiver/Intermediary)

and

to

process

the

Header

entries.


Listing

below

shows

the

sample

representation

of

a

SOAP

header

element

in

a
 SOAP

message.
16
)

 (
SOAP

Header

element
17
)	 (
Anatomy

of

a
SOAP

Message


SOAP

Body

:

A

SOAP

envelope

contains

a

SOAP

body

as

its

child

element,

and

it

may

contain

one

or

more

optional

SOAP

body

block

entries.

The

Body

represents

the

mandatory

processing

information

or

the

payload

intended

for

the

receiver

of

the

message.


The

SOAP

1.1

specification

mandates

that

there

must

be

one

or

more

optional

SOAP

Body

entries

in

a

message.


A

Body

block

of

a

SOAP
message

can

contain

any
 of

the

following:


■

RPC

method

and

its

parameters


■

Target

application

(receiver)

specific
data


■

SOAP

fault

for

reporting

errors

and

status

information
18
)

 (
SOAP
Body

element
19
)	 (
SOAP

Encoding


The

SOAP

encoding

defines

a

set

of

rules

for

expressing
 its

data
 types.


It

is

a

generalized

set

of

data

types

that

are

represented

by

the

programming

languages,

databases,

and

semi-structured

data

required

for

an

application.


SOAP

encoding

also

defines

serialization

rules

for

its

data

model

using

an

encodingStyle

attribute

under

the

SOAP-ENV

namespace

that

specifies

the

serialization

rules

for

a

specific

element

or

a

group

of

elements.


SOAP

encoding

supports

both

simple-

and

compound-type

values.
20
)

 (
SOAP

Encoding


Simple

Type

Values:

The

definition

of

simple

type

values

is

based

on

the

“W3C

XML

Schema,

Part

-2:

Datatypes”

specification.


Examples

are

primitive

data

types

such

as

string,

integer,

decimal,

and

derived

simple

data

types

including

enumeration

and

arrays.


The

following

examples

are

a

SOAP

representation

of

primitive

data

types:


<int>98765</int>


<decimal>

98675.43</decimal>


<string>

Java

Rules

</string>


Enumeration:

Enumeration

defines

a

set

of

names

specific

to

a
base
type.
21
)	 (
Enumeration

data

type
22
)
 (
SOAP

Encoding


Compound

Type

Values:

Compound

value

types

are

based

on

composite

structural

patterns

that

represent

member

values

as

structure

or

array

types.


The

following

are

the

main

types

of

compound

type

values.


Structure

Types


Array

Types


Multiple

References

in

Arrays


Partially

Transmitted

Arrays


Sparse

Arrays:
Sparse

arrays

are

defined

using

a

SOAP-ENC:position,

which

enables

the

position

of

an

attribute

to

be indicated

with

an

array

and

returns

its

value

instead

of

listing

every
entry

in

the

array.
23
)	 (
Structure

data

type
Structure

data

type

using

simple

and

complex

types
24
)

 (
SOAP

Message

Exchange

Model


Basically,

SOAP

is

a stateless

protocol

by nature

and

provides

a

composable

one-way

messaging

framework

for

transferring

XML

between

SOAP

applications

which

are referred

to

as
SOAP

nodes.


These
SOAP

nodes
represent

the logical

entities

of

a

SOAP

message

path

to

perform

message

routing

or

processing.


In

a

SOAP

message,

SOAP

nodes

are

usually

represented

with

an

endpoint

URI

as

the

next

destination

in

the

message.


In

a

SOAP

message,

a

SOAP

node

can

be

any

of

the

following:
25
)	 (
SOAP

Message

Exchange

Model


SOAP
 sender:

The one who

generates

and

sends
the

message.


SOAP

receiver:

The

one

who

ultimately

receives

and

processes

the

message

with

a

SOAP

response,

message,

or

fault.


SOAP
 intermediary:

The

one who

can

play

the
role

of

a

SOAP

sender

or

SOAP

receiver.

In

a

SOAP

message exchange

model,

there

can

be

zero

or
more

SOAP

intermediaries

between

the

SOAP

sender

and

receiver

to

provide

a

distributed

processing

mechanism
for

SOAP

messages.


Figure

following

represents

a

basic

SOAP

message

exchange

model with

different

SOAP

nodes.
26
)

 (
Basic
SOAP

message

exchange

model
SOAP message

exchange

model

with

intermediaries
27
)	 (
SOAP

Communication


SOAP

is
designed

to

communicate

between

applications

independent

of

the

underlying

platforms

and

programming

languages.


To

enable

communication

between

SOAP

nodes,

SOAP

supports

the

following

two

types

of

communication

models:


SOAP

RPC:

It

defines

a
remote

procedural

call-based

synchronous

communication

where

the

SOAP

nodes

send

and

receive

messages

using

request

and

response

methods

and

exchange

parameters

and

then

return
 the

values.


SOAP

Messaging:

It

defines

a

document-driven

communication

where

SOAP

nodes
 send

and receive

XML-based

documents

using

synchronous

and

asynchronous

messaging.
28
)

 (
SOAP

Communication


SOAP

RPC:

The

SOAP

RPC

representation

defines a

tightly

coupled

communication

model

based

on

requests

and

responses.


Using

RPC

conventions,

the

SOAP

message

is

represented

by

method

names with

zero

or

more

parameters

and

return
values.


Each

SOAP

request

message

represents

a

call

method

to

a

remote

object

in

a

SOAP

server

and

each

method

call
will

have

zero

or

more

parameters.


Similarly,

the

SOAP

response

message

will

return

the

results

as

return

values

with

zero

or

more

out

parameters.


In

both

SOAP

RPC

requests

and

responses,

the

method

calls

are

serialized

into

XML-based

data

types

defined

by

the

SOAP

encoding

rules.
29
)	 (
SOAP

request

using

RPC-based

communication
30
)

 (
SOAP response

message

using

RPC-based

communication
31
)	 (
SOAP

Messaging


SOAP

Messaging

represents

a

loosely

coupled

communication

model

based

on

message

notification

and

the

exchange

of

XML

documents.


The

SOAP

message
 body

is

represented

by

XML

documents

or

literals

encoded

according

to

a

specific

W3C

XML

schema,

and

it

is

produced

and

consumed

by

sending

or

receiving

SOAP

node(s).


The

SOAP

sender

node

sends

a

message

with

an

XML

document

as

its

body

message

and

the

SOAP

receiver

node

processes

it.


Listing

follows

represents

a

SOAP

message

and

a

SOAP

messaging-based
communication.


The

message

contains

a

header

block

InventoryNotice

and

the

body

product,

both

of

which

are

application-defined

and

not

defined

by

SOAP
32
)
 (
The

header

contains

information

required

by

the

receiver

node
and

the

body

contains

the

actual

message

to

be

delivered.
SOAP

message

using

messaging-based

communication
33
)	 (
SOAP

Message

Exchange

Patterns


Based

on

the

underlying

transport

protocol,

to

enhance

the

communication

and

message

path

model

between

the

SOAP

nodes,

SOAP

chooses

an

interaction

pattern

depending

upon

the

communication

model.


Although

it

depends

upon

SOAP

implementation,

SOAP

messages

may

support

the

following

messaging

exchange
patterns

to

define

the

message

path

and

transmission

of

messages

between

SOAP

nodes,

including

intermediaries.


It

is

important

to

note

that

these

patterns

are

introduced

as

part

of

SOAP

1.2
 specifications.


The

most

common

SOAP

messaging

patterns

are

as

follows:
34
)

 (
SOAP

Message
 Exchange

Patterns


One-way

message:

In

this

pattern,

the

SOAP

client

application

sends

SOAP

messages

to

its

SOAP

server

without

any

response

being

returned

(see

Figure

below).

It

is

typically

found

in

email

messages.


Request/response

exchange:

In

this

pattern,

the

SOAP

client

sends
 a

request

message that

results

in

a

response

message

from

the

SOAP

server

to

the

client

(see

Figure

below).


Request/N*Response

pattern.

It

is

similar

to

a

request/response

pattern,

except

the

SOAP

client

sends

a

request

that

results

in

zero

to

many

response

messages

from

the

SOAP

server

to the

client

(see

Figure

below).
35
)	 (
SOAP

Message
 Exchange

Patterns


Notification

pattern:

In

this

pattern,

the

SOAP

server

sends

messages

to

the

SOAP

client

like

an

event

notification,

without

regard

to

a response

(see

Figure

below).


Solicit-response

pattern:

In

this

pattern,

the

SOAP

server

sends

a

request

message

to

the

SOAP

client

like

a status

checking

or

an

audit

and

the client

sends

out

a

response

message

(see

Figure

below).
36
)

 (
One-way

message

pattern
Request/Response

pattern
Request/N*Response

pattern
37
)	 (
Notification

pattern
Solicit-response

pattern
38
)

 (
SOAP

Security


Security

in

SOAP

messages

plays

a

vital

role

in

access

control,

encryption,

and

data

integrity

during

communication.


In

general,

SOAP

messages

do

not

carry

or

define

any

specific

security

mechanisms.


However,

using

the
 SOAP
headers
provides

a
way

to

define

and

add
 features

enabling

the

implementation

of

application-specific

security

in
 a
form
of

XML-

based

metadata.


The

metadata

information

can

be

application-specific

information

incorporating

message

security

with

associated

security

algorithms

like

encryption

and

digital

signatures.
39
)	 (
SOAP

Security


But

all

of

the

security-related

elements

are

identified

using

a

single

namespace

identifier

using

the

prefix

SOAP-SEC

and

with

an

associated

URI

using

http://schemas.xmlsoap.org/soap

/security/.


It

also

defines

the

three

security

element

tags
<SOAP-SEC:

Encryption>,

<SOAP-SEC:Signature>,

and

<SOAP-SEC:Authorization>.


SOAP

Encryption:

The

use

of

XML-based

encryption

in

SOAP

permits

secure

communication

and

access

control

to

be

implemented

by

encrypting

any

element

in

the

SOAP

envelope.


Listing

below

is

a

sample

representation

of

a

SOAP

message

using

XML

encryption

for

encrypting

its

data

elements
40
)

 (
SOAP message

using

XML

encryption
41
)	 (
SOAP

Security


SOAP

Digital

Signature:

The

use

of

an

XML-based

digital

signature

in

SOAP

messages

provides

message

authentication,

integrity,

and

non-

repudiation

of

data

during

communication.


The

SOAP

sender

node

that

originates

the

message

applies

an

XML-based

digital

signature

to

the

SOAP

body

and

the

receiver

node

validates

the

signature.


Listing

below

is

a

sample

representation

of

a

SOAP
message

using

XML

digital

signatures.
42
)

 (
SOAP message

using

XML

digital

signatures
43
)	 (
SOAP

Security


SOAP

Authorization:
 Using

XML-based

authorization

in

SOAP

messages

enables

the

authorization

of

the

SOAP

messages

using

certificates

from

the

originating

SOAP

sender

nodes.


SOAP

authorization

applies

an

XML-based

digital

certificate

from

an

independent

authorization

authority

to

the

SOAP

message
 from

the

sender.


Listing

below

is

a

sample

representation

of

a

SOAP

message

using

an

XML-based

authorization.
44
)

 (
SOAP message

using

an

XML-based

authorization
45
)	

UNIT-V

 (
Developing

Web

Services

using
SOAP
1
)	 (
Developing

Web

Services

using

SOAP


Building

SOAP

Web

Services


Developing

SOAP

Web

Services

using

Java


Limitations

of

SOAP
2
)

 (
Building

SOAP

Web

Services


We

all

are

a
w
are

that

SOAP

provides

an

XML-based

communication

protocol

solution

for

bridging

disparate

applications

in

a

distributed

environment

using

XML-

based

messaging

or

by

remotely

invoking

methods.


F
r
o
m

a

Web

services

point

of

view,

it

defines

and

provides

the

following:


A

standardized

way

to

transmit

data

using

Internet-based

protocols

and
3
)	 (
Building

SOAP

Web

Services

a

common-wire

format

(XML)

between

the

Web

service

provider

and

its

requestors.

An

extensible

solution

model

using

an

XML-based

framework

enabling

th
e

Web

service

providers

and

requestors

to

interoperate

with

each

other

in

a

loosely

coupled

fashion

and

without

knowing

the

underlying

application

architecture
4
)
 (
Building

SOAP

Web

Services


(such

as

programming

languages

and

operating

systems).

This

enables

the

creation

of

Web

services

o
ver

existing

applications

without

modifying

the

underlying

applications.


In

a

Web

services

implementation

model,

SOAP

ca
n

be

implemented

as

a

client,

as

a

server

application,

or

both,

as

follows:
5
)	 (
Building

SOAP

Web

Services


A

SOAP-based

client

application

pl
ays

the

role

of

a

Web

services

requestor,

which

typically

handles

an

XML-based

request/response,

a

message

containing

a

X
M
L

document,

parameters

required

to

invoke

a

remote

method,

or

the

calling

of

a

SOAP

server

application.


A

SOAP

client

ca
n

be

a

Web

server

or

a

traditional

application

running

a

SOAP-

based

p
r
o
xy
,

which

send

SOAP

requests

or

SOAP

messages

using

HTTP

or

any

other

supporting
6
)

 (
Building

SOAP

Web

Services


ASOAP

server

application

pl
ays

the

role

of

a

Web

services

provider,

which

processes

the

SOAP

requests

and

messages

from

calling

SOAPbased

clients.


The

SOAP

server

application

interacts

with

its

encapsulated

applications

to

process

the

requests

or

messages

and

then

sends

a

response

to

the

calling

SOAP

client.
7
)	 (
Building

SOAP

Web

Services


SOAP

server

applications

also

ca
n

act

as

SOAP

intermediaries,

which

allows

the

extensibility

of

the

application

to

enable

the

processing

and

forwarding

of

messages

through

a

series

of

SOAP

nodes

or

a

final

destination.


In

case

of

acting

SOAP

intermediaries,

the

SOAP

server

application

typically

works

as

a

SOAP client

application

to

the

final

destination

of

the

message.
8
)

 (
Building

SOAP

Web

Services


To
understand

the

key

challenges
in

the

implementation

of

Web

services

using

SOAP,

let’s

take

a

look

at

how

SOAP

applications

ca
n

be

implemented

using

Java

and

t
h
e
n

deplo
y
ed

in

a Java-based

Web

services

runtime

environment.
9
)	 (
Building

SOAP

Web

Services


SOAP

do
es

not

mandate

a

single

programming

model

nor

does

it

define

programming

language-specific

bindings

for

its

implementation.


It

is

up

to

the

provider

to

choose

a

language

and

to

define

the

implementation

of

its

language-specific

bindings.


In

this

context,

to

use

Java

as

a

language

for

developing

SOAP

applications

requires

its

Java

implementation

for

SOAPspecific

bindings.
10
)

 (
Developing

SOAP

Web

Services

Using
Java


Additionally,

having

SOAP-based

applications

that

adopt

a

J2EE-based

infrastructure

and

component

framework

allows

the

inheritance

of

the

characteristics

of

J2EE

container-

based

services

s
u
c
h

as

transactions,

application

security,
and
back-end

application/databases

connectivity.
12
)Developing SOAP Web Services Using Java
As of today, there are many SOAP application vendors that have made Java- based SOAP implementations for developing Web applications to Web services.
In general, the use of Java for developing SOAP applications enables scalable and portable applications to be built that also can	interoperate	with	heterogeneous applications	residing	on		different platforms by resolving the platform- specific	incompatibilities		and	other issues.								11

 (
Developing

SOAP

Web

Services

Using
Java


The

release

of

the

Java

Web

Services

Developer

Pack

(JWSDP)

also

provides

a

full-fledged

API

solution

for

developing

SOAP-based

Web

services.


A

long

list

of

op
e
n

source

communities,

Web

services

platform

providers,

and

J2EE

vendors

also

have

released

their

SOAP

implementations

adopting

Java

platform

and

Javabased

APIs.
13
)	 (
Developing

SOAP

Web

Services

Using
Java


To

study

and

explore

the

features

of

a

Java-based

SOAP

implementation,

we

chose

to

use

Apache

Axis,

a

Java-based

toolkit

from

Apache

Software

foundation

for

developing

SOAP-based

Web

services.


Axis

also

supports

the

JAX-RPC,

JAXM,

SAAJ,

and

SOAP

1.2

specifications

in

its

forthcoming

implementations.

Axis

follows

its

predecessor

efforts

of

Apache

SOAP.
14
)

 (
Developing

SOAP

Web

Services

Using
Java


Apache

refers

to

Axis

as

the

next

generation
of
Apache
SOAP

implementation

that

provides

a

complete

solution

kit

for

Web

services,

which

is

m
o
re

than

sending

and

receiving

SOAP

messages.


The

Axis

toolkit

is

available

for

download

at

http://xml.apache.org/axis
.
15
)	 (
Developing
 Web

Services

Using
Apache

Axis


Apache

Axis

is

an

open-source

implementation

that

provides

a

Java-

based

SOAP

implementation

for

developing

Web

services.


To

implement

Web

services,

it

facilitates

a

SOAP

runtime

environment

and

Java-

based

API

framework

for

implementing

the

core

components

of

Web

services
adopting
compliant
protocols.
standards
and
16
)
 (
Developing
 Web

Services

Using
Apache

Axis


As

a

packaged

solution,

the

Apache

Axis
environment

provides

the

following:


A

SOAP-compliant

r
un
t
i
me

environment

that

ca
n

be

used

as

a

standalone

SOAP

server

or

as

a

plug-in

component

in

a

compliant

Java

servlet

engine

(such

as

Tomcat,

iPlanet,

and

Weblogic)


An

API

library

and

runtime

environment
for

developing

SOAP

RPC

and

SOAP
messaging-based
services
applications
and
17
)	 (
Developing
 Web

Services

Using
Apache

Axis


Tools

for

creating

WSDL
 from

Java
classes

and

vice-versa


Tools
for

deploying,

monitoring,

and

testing

the

Web

services


Axis

also

provides

full-fledged

implementation

s
uppo
rt

for

Sun

JWSDP
1.0

APIs,

especially

JAX-RPC

and

SAAJ.


To

find

out

the

current

status

of

the

Axis

implementation

and

its

availability

for

download,

go

to

Apache’s

XMLWeb

site

at

http
:
//xml
.
apache
.
org/axis/
.
18
)

 (
Developing
 Web

Services

Using
Apache

Axis


A

transport-independent

means

for

adopting

a

variety

of

transport

protocols

(such

as

HTTP,

S
M
TP,

and

FTP)


Automatic

serialization

and

deserialization

for

Java

objects

to

and

from

X
M
L

in

SOAP

messages


Support

for

exposing

EJBs

as

Web

services,

especially

the

methods

of

stateless

session

EJBs
19
)	 (
Installing

Axis

for

Web

Services


The

process

of

installing

Axis

for

building

a

Web

services

environment

is

quite

simple.


Axis

ca
n

be

installed

as

p
art

of

a

Java

servlet

engine

or

as

a

J2EE-compliant

application

server,

or

it

also

ca
n

r
un

as

an

independent

server.


Because

our

focus

is

creating

Web

services

using

Axis,

we

require

Axis

installation

using

a

Java

servlet

engine.
20
)

 (
Installing

Axis

for

Web

Services


For
our

illustration,

we

will

be

using

the

Apache

Tomcat

4.0.3

servlet

engine

available
for
download
from

http
:
//jakarta
.
apache
.
org/tomcat/index
.
htm

l
.


Now,

let’s

take

a

look

at

the

steps

involved

in

installing

Axis

within

an

Apache

Tomcat

server

environment:
21
)	 (
Installing

Axis

for

Web

Services


1.

Download

the

Apache

Axis
(current
release)
http://xml.apache.org/axis/.
t
ool

kit
from
Unzip
(Windows)

or

untar

(UNIX)

the

package

to
your

local

system

directory

(for

example,

d:\xmlaxis)

and

set

an

environment

variable

as

AXIS_HOME.
22
)

 (
Installing

Axis

for

Web

Services


2.

Download

Apache

Tomcat

4.0.3

(or

current
release)
from

http://jakarta.apache.org/builds/jakarta-

tomcat-4.0/release/

and

t
h
e
n

install

it

to

your

local

system

directory

(that

is,

d:\tomcat4)

and

set

an

environment

variable
as
TOMCAT_HOME.
After

installation,

start

the

Tomcat

server

and

ensure

t
h
at

it

is

working

by

locating

http://localhost:8080/index.html

with

your

browser. The

browser

will

display

the

screen

shown

below.
23
)	 (
DIRECT

TRANSMISSION
Figure
4.9

Browser

showing

successful
installation

of

the

Apache

Tomcat

nvironment.
24
)
 (
Installing

Axis

for

Web

Services


3.Navigate

to

your

Axis

installation

home

directory

and

copy

the

axis

folder

from

AXIS_HOME\webapps\
to

TOMCAT_HOME\webapps\

to

deploy

the

Axis

libraries

as

an

Axis

servlet.
25
)	 (
Installing

Axis

for

Web

Services


4.

To

deploy

the

Axis

libraries

as

a

servlet

in

the

Tomcat

container,

create

a

context

in

the

Tomcat

server

configuration

by

editing

TOMCAT_HOME/conf/server.conf

with

the

following

lines:


<Context

path=”/axis” docBase=”axis”

debug=”0”
reloadable=”true”

crossContext=”true”>

</Context>
26
)

 (
Installing

Axis

for

Web

Services


5.

Add

axis-specific

supporting

class

libraries

(JARs)

in

the

Tomcat

environment.

The required

supporting

class

libraries

include

the

following:


Apache

Xerces

parser

for

Java

(Xerces2)

with

JAXP

1.1

support,

which

is

available

for

download

a

http://xml.apache.org
/xerces2-j/index.html
.

Unzip

the

download

and

copy

the

xerces.jar

file

to

TOMCAT_HOME\webapps\axis
\WEB-

INF\lib.
27
)	 (
Installing

Axis

for

Web

Services


If

your

application

requires

database

connectivity

or

other

application

access,

ensure

that

you

copy

all

of

the

JDBC

drivers

and

required

class

libraries

to

TOMCAT_HOME\webapps\axis\WEB-

INF\lib.


As

p
art

of

the

kit,

Axis

provides

class

libraries

for

JAXRPC

and

JAXM

as

jaxrpc.jar

and

saaj.jar.

In

the

case

of

using

JAX-RPC

and

JAXM/SAAJ

libraries,

ensure

t
h
at

these

JAR

files

are

copied

to

TOMCAT_HOME\common\lib.
28
)

 (
Installing

Axis

for

Web

Services


6.

To

test

the

Axis

Web

services

environment,

start

the

Tomcat

server.

Then,

use

your

Web

browser

and

op
e
n

the

followings

URLs:


To
confirm
installation:

http:localhost:8080/axis/index.html


To

validate

t
h
e

Axis

environment:

http://localhost:8080/axis

/happyaxis.jsp


To

list

the

available

Axis

services:
http://localhost:8080/axis
/servlet/AxisServlet
29
)	 (
Installing

Axis

for

Web

Services


To

compile

and

test

applications,

create

a

run

script

(.bat

or

.sh)

to

ensure

that

the

CLASSPATH

in

the

development

environment

includes

the

following:


AXIS_HOME/lib/axis.jar


AXIS_HOME/lib/jaxrpc.jar


AXIS_HOME/lib/saaj.jar


AXIS_HOME/lib/commons-logging.jar


AXIS_HOME/lib/log4j-1.2.4.jar


AXIS_HOME/lib/xmlsec.jar
30
)

 (
Installing

Axis

for

Web

Services


AXIS_HOME/lib/tt-bytecode.jar


AXIS_HOME/lib/wsdl4j.jar


AXIS_HOME/xerces.jar


AXIS_HOME/<DATABASE/OTHER_LIBRA
RIES.jar>


DEVELOPMENT_HOME/
31
)	 (
Axis

Infrastructure

and

Components


In

general,

the

Axis

infrastructure

consists

of

the

following

components

as modular

subsystems

functioning

together

as

a

server

or

client,

depending

upon

whether

the

Web

services

environment

is

a

service

provider

or

service

requestor.


Axis

Engine


The

Axis

engine

acts

as

the

SOAP

runtime

environment

for

processing

the

inbound

and

outbound

messages

by

looking

up

the

SOAPAction

headers

for

transport

(that

is,

http.SOAPAction).
32
)

 (
Axis

Infrastructure

and

Components


To

process

messages,

the

Axis

engine

facilitates

a

series

of

handlers

as

chains

to

invoke

and

process

the

messages.

The

messages

are

passed

to

the

handler

for

invocation

as

MessageContext

objects.


Handlers

and

Chains


The

Axis

engine

provides

both

client-

and

server-side

message

processors

as

client-

side

handlers

and

server-side

handlers.
33
)	 (
Axis

Infrastructure

and

Components


To

process

messages,

the

Axis

engine

facilitates

a

series

of

handlers

as

chains

to

invoke

and

process

the

messages.

The

messages

are

passed

to

the

handler

for

invocation

as

MessageContext

objects.


Handlers

and

Chains


The

Axis

engine

provides

both

client-

and

server-side

message

processors

as

client-

side

handlers

and

server-side

handlers.
34
)
 (
Axis

Infrastructure

and

Components


The

Axis

engine

processes

messages

using

a

series

of

request

handlers,

and

after

the

invocation

of

a

target

service

it

returns

as

a

series

of

response

handlers.


Axis

defines

the

group

of

handlers

that

contain
similar

responsibilities

combined

together

as

chains.


Axis

provides

a

set

of

request

and

response

chains

grouped

to

process

messages

on

the

message

p
at
h

and

especially

to

s
uppo
rt

transport,

global

request/response,

and

messaging.
35
)	 (
Axis

Infrastructure

and

Components


Axis

provides

service

handlers

to

facilitate

RPC-

and

messaging-based

Web

services,

depending

upon

the

ty
p
e

of

the

deployed

services

in

the

server

environment.


The

key

characteristics

of

the

Axis

service

handlers

for

R
P
C-

and

messaging-based

Web

services

are

as

follows:
36
)

 (
Axis

Infrastructure

and

Components


In

the

RPC

style

of

Web

services,

the

service
handler
org.apache.

axis.providers.java.RPCProvider

identifies

the

required

method

for

invocation

and

then

executes

it

by

providing

the

parameters

obtained

as

p
art

of

the

SOAP

request

message.


It

uses

serialization

and

deserialization

of

Java

objects

to

X
M
L

and

vice

versa

during

the

service

request

and

response.
37
)	 (
Axis

Infrastructure

and

Components
Figure

:

Axis-based

service

provider

infrastructure.
38
)

 (
Axis

Infrastructure

and

Components
Figure
:

Axis-based

service

requestor

infrastructure.
39
)	 (
Axis

Infrastructure

and

Components


Axis

Administration


The

Axis

administration

provides

the

administration
and
configuration

information

for

the

Axis

engine

to

enable

the

runtime

service

chains

and

other

SOAP

services.


It

allows

the

environment

of
the

Axis

engine

to

be

configured

with

a

Web

service

deployment

descriptor

(WSDD)

file.
40
)

 (
Axis

Infrastructure

and

Components


The

WSDD

file

defines

the

supported

transports,

global

configuration

of

the

axis

engine

as

handlers,

and

the

deployed

services.


It

is

usually

represented

as

server-

config.wsdd.


To

obtain

information

abou
t

the

Axis

engine

installation

and
its

supported

transports,

services,

handlers,

and

so

on,

run

the

following

co
mm
and
:

java

org.apache.axis.client.AdminClient

list
41
)	 (
Axis

Infrastructure

and

Components


Serializers

and

Deserializers


Axis

supports

SOAP

encoding

to

convert

objects

and

their

values

b
et
w
ee
n

the

native

programming

language

and

X
M
L

representations.


To

s
uppo
rt

SOAP

encoding,

Axis

provides

serializing

and

deserializing

mechanisms,

which

enable

t
h
e

conversion

of

the

Java

primitives

and

objects

to

XMLbased

representations

and

vice

versa,

without

writing

any

specific

code.
42
)

 (
Axis

Infrastructure

and

Components


In

the

case

of

Java

Beans,

Axis

requires

the

Java

classes

to

be

mapped

with

a

W3C

X
M
L

Schema

ty
p
e

using

a

<beanMapping>

tag

in

the

WSDD

file.
43
)	 (
Limitations

of

SOAP


Although

the

SOAP

specifications

define

a

promising

communication

model

for

Web

services,

the

following

limitations

exist

that

are

not

currently

addressed

by

the

SOAP

specifications:


1.

The

specification

does

not

address

message

reliability,

secure

message

delivery,

transactional

support,

and

its

communication

requirements

of

a

SOAP

implementation.
44
)

 (
Limitations

of

SOAP


2.

The

specification

does

not

address

issues

like

object

activation

and

object

lifecycle

management.


3.

The

specification

discusses

HTTP

as

the

p
r
i
mary

transport

protocol

but

does

not

discuss

the

usage

of

other

transport

protocols.


4.

The

specification

does

not

address

how

to

handle

SOAP

messages

out

of

a

SOAP

implementation.
45
)	 (
Limitations

of

SOAP


Note

t
h
at

the

limitations

of

SOAP

have

been

currently

well

addressed

by

the

ebXML

framework

as

p
art

of

the

ebXML

messaging

service,

which

complements

SOAP

and

other

Web

services

standards.
46
)

UNIT-VI

 (
Describing

Web

Services
1
)	 (
Describing

Web

Services


W
S
D
L
(
W
eb
Language)
Services
Description


WSDL

in

the

world

of

Web

Services


Web

Services

life

cycle


Anatomy

of

WSDL

definition

document


WSDL

bindings


W
S
DL

Too
l
s


Limitations

of

WSDL
2
)

Web Services Description Language (WSDL)	
Developing	Web	Services	Using
SOAP,” we saw how to develop and deploy Web services that use the Simple Object Access Protocol, or SOAP.
But there is more to Web services than just SOAP support.

 (
Web

Services

Description

Language
(WSDL)


A

Web

service

ca
n

further

its

capabilities

by

supporting

a

description

of

its

interfaces

so
that

its

potential

users

c
an

study

it

and

determine

whether

the

Web

service

supports

the

behavior

t
h
at

they

need.


Also,

an

organization

that

develops

Web

services

ca
n

register

these

Web

services

at

a

location

that

is

well

known,

so

that

its

potential

users

can

discover

them.
4
)

 (
WSDL

in

the

World

of

Web

Services


WSDL,

as

we

know,

is

a

description
language

for

Web

services.


So
what

does

this

exactly

mean?


This

means

t
h
at

WSDL

represents

information

about

the

interface

and

semantics

of

how

to

invoke

or

call

a

Web

service.


WSDL

definition

contains

four

important

pieces

of

information

abou
t

the

Web

service:
5
)	

 (
WSDL

in

the

World

of

Web

Services


Interface

information

describing

all
the
publicly

available

functions


Data

ty
p
e

information

for

the

incoming

(request)

and

outgoing

(response)

messages

to

these

functions


Binding

information

about

the

protocol

to

be

used

for

invoking

the

specified

Web

service


Address

information

for

locating

the
specified

Web

service
6
)

 (
WSDL

in

the

World

of

Web

Services


Once

we

develop

a

Web

service,

we

create

its

WSDL

definition.


We

ca
n

create

this

definition

either

manually

or

by

using

a

tool.


Many

tools

are

available

for

generating

a

WSDL

definition

from

existing

Java

classes,

J2EE

components

(such as

Servlets/EJBs),

or

from

scratch.
7
)	

 (
WSDL

in

the

World

of

Web

Services


Once

the

WSDL

definition

is

created,

a

link

to

it

is

published

in

a

Web

services

registry

(based

on

UDD
I,

for

instance),

so

that

the

potential

user(s)

of
this

Web

service

ca
n

follow
this

link

and

find

out

the

location

of

the

Web

service,

the

function

calls

that

it

supports,

and

how

to

invoke

these

calls.


Finally,

the

user(s)

would

use

this

information

to

formulate

a
SOAP

request

or

any

other

ty
p
e

of

request

based

on

the

binding

p
r
o
t
ocol

supported,

in

order

to

invoke

the

function

on

a

Web

service.
8
)

 (
Web

Service

Life

Cycle
Figure:

illustrates

the

steps

of

the

Web
 service

life

cycle.
9
)	 (
WS

Life

Cycle

Steps


Step

1

illustrates

a

service

provider

publishing

its

Web

service

to
 a

UDDI

registry.


This

is

when

the

service

provider

would

create

a

WSDL

definition

and

publish

a

link

to

this

definition

along

with

the

rest

of

the

Web

service

information

to

a

UDDI

registry.
10
)

 (
WS

Life

Cycle

Steps


Step

2

illustrates

an

interested

service

user

locating

the

Web

service

and

finally

obtaining

information

abou
t invoking

the

Web

service

from

the

published

WSDL

definition.


This

step

involves

downloading

a

WSDL

definition

to

the

service

user

system

and

deserializing

WSDL

to

a

Java

class

(or

any

other

language).


This
 Java

interface

serves

as

a

proxy
to

the

actual

Web

service.


It

consists

of

the

binding

information
of

the

Web

service.
11
)	 (
WS

Life

Cycle

Steps


Step

3

shows

the

service

user

binding

at
runtime

to

the

Web

service.


In

this

step,

the

service

user’s

application

would

make

use

of

the

Java

interface

representing

WSDL

as

a

p
r
o
xy
,

in

order

to

bind

to

the

Web

service.
12
)

 (
WS

Life

Cycle

Steps


Step

4

finally

shows

the

service

user

invoking

the

Web

service

based

on

the

service

invocation

information

it

extracted

from

the

Web

service

WSDL

definition.


This

is

when

the

service

user’s

application

would

make

use

of

the

Java

interface

representing

WSDL

as

a

p
r
o
xy
,

in

order

to

invoke

the

methods/functions

exposed

by

the

Web

service.
13
)	
 (
Language

and

Platform

Independency
of

WSDL


WSDL

is

capable

of

describing

Web

services

that

are

implemented

using

any

language

and

deployed

on

any

platform.


Thus,

WSDL

contributes

toward

enabling

interoperability

in

the

Web

service

architecture.
14
)

 (
Language

and

Platform

Independency
of

WSDL


In

other

words,

as

long

as

a

WSDL

definition

can

be

understood

and

consumed

by

the

service

user,

the

service

user

systems

ca
n

ob
ta
in

all

of

the

information

necessary

to

invoke

a

Web

service

potentially

developed

and

deployed

using

a

completely

different

set

of

platform

tools

and

servers.
15
)	 (
Anatomy

of

a
WSDL

Definition
Document


A

WSDL

definition

document

consists

of

the

following

seven

key

structural

elements:


<definitions>


<types>


<message>


<po
rt
T
y
p
e
>


<binding>


<port>


<service>
16
)

 (
Anatomy

of

a
WSDL

Definition
Document


<definitions>.

A

WSDL

document

is

a

set
of

definitions.


These

definitions

are

defined

inside

the
<definitions>

element,

which

is

the

r
oo
t

element

in

a

WSDL

document.


It

defines

t
h
e

n
ame

of

the

Web

service

and

also

declares

the

namespaces

that

are

used

throughout

t
h
e

rest

of

the

WSDL

document.
17
)	 (
Anatomy

of

a
WSDL

Definition
Document


<types>.

This

element

defines

all

of

the

data

types

that

would

be

used

to

describe

the

messages

that

are

exchanged

between

the

Web

service

and

the

service

user.


WSDL

does

not

mandate

the

use

of

a

specific

typing

system.

However,

as

per

the

WSDL

specification,

X
M
L

Schema

is

the

default

typing

system.
18
)

 (
Anatomy

of

a
WSDL

Definition
Document


<message>.

This

element represents

a

logical

definition

of

the

data

being

transmitted

between

the

Web

service

and

the

service

user.


This

element

describes

a

one-way

message,

which

may

represent

a

request

or

response

s
en
t

to

or

from

the

Web

service.


It

contains

zer
o

or

m
o
re

message

<part>

elements,

which

basically

refer

to

the

request

parameters

or

response

return

values.
19
)	 (
Anatomy

of

a
WSDL

Definition
Document


<
po
r
t
T
y
p
e>.


This

element

defines

the

abstract

definition

of

the

operations

supported

by

a

Web

service,

by

combining

various

request

and

response

messages

defined

by

<message>

elements.


Each

operation

refers

to

an

input

message

and

an

output

message.
20
)

 (
Anatomy

of

a
WSDL

Definition
Document


<binding>.


This

element

specifies

a

concrete

protocol

and

data

format

used

for

representing

t
h
e

operations

and

messages

defined

by

a

particular
<po
rt
T
y
p
e
>,

on

the

wire.


<port>.


This

element

specifies

an
 address

for

binding

to

the

Web

service.
21
)	 (
Anatomy

of

a
WSDL

Definition
Document


<service>.


This

element

aggregates

a

set

of
related
<port>

elements,

eac
h

which

uniquely

specify

the

binding

information
of

the

Web

service.


A

<service>

consisting

of

multiple

<port>

elements

essentially

represents

the

capability

of

the

service

to

be

invoked

over

multiple

binding
s
.
 M
o
re

information

on

WSDL

bindings

is

discussed

in

the

next

section.
22
)
 (
WSDL
-
WeatherInfoService
23
)	 (
WSDL
-
WeatherInfoService
24
)

 (
WSDL

Operation

Types
Figure
 :WSDL

operation

types
25
)	 (
WSDL

Bindings


In

WSDL,

the

term

binding

refers

to

the

process

of

associating

protocol

or

data

format

information

with

an

abstract

entity

such

as

<message>,

<operation>,

or
<
po
r
t
T
y
p
e>.


In

this

section,

we

examine

t
h
e

s
uppo
rt

for

bindings

in

the

WSDL

1.1

specification.

Let’s
 begin

with

the

WSDL

binding

extensions.
26
)

 (
WSDL

Binding

Extensions


WSDL

allows

user-defined

elements,

also

known

as

Extensibility

Elements,

under

various

elements

defined

by

a

default

WSDL

namespace.


These

elements

are

commonly

used

to

specify

some

technology-specific

binding,

although

they

ca
n

be

used

for

other

purposes

as

well.


Extensibility

elements,

when

used

to

specify

a

technology-specific

binding,

are

known

as

WSDL

Binding

Extensions.
27
)	 (
WSDL

Binding

Extensions


Extensibility

elements

provide

a

powerful

mechanism

for

extending

WSDL

because

they

enable

s
uppo
rt

for

network

and

message

protocols

to

be

revised

without

having

to

revise

the

WSDL

specification.


The

base

specification

of

WSDL

defines

three

WSDL

binding

extensions,

which

are

as

follows:


SOAP

binding


HTTP
GET

&

POST

binding


MIME

binding
28
)

 (
WSDL

Binding

Support

for
Operations


All

four

types

of

operations

supported

by
W
SDL


one-way,


requestresponse,


solicit-response,


and

notificationnotification—represent

an

abstract

notion

only.


Binding

describes

the

concrete

correlation

to

these

abstract

notions.
29
)	 (
WSDL

Binding

Support

for
Operations


Binding

determines

how

the

messages

are

actually

sent,

for

instance,

within

a

single

communication

(for

example,

an

HTTP

request/response)

or as

two

independent

communications

(for

example,

two

HTTP

requests).


Thus,

binding

for

a

specific

operation

ty
p
e

must

be

defined
 in

order

to

successfully

carry

out

that

type

of

operation.


Note

t
h
at

although

the

WSDL

structure

supports

the

bindings

for

these

four

operations,

the

WSDL
30
)

 (
WSDL

Binding

Support

for
Operations


Note

that

although

the

WSDLstructure

supports

the

bindings

for

these

four

operations,

t
h
e

WSDL

specification

defines

bindings

for

only

one-way

and

request-response

operations.


Let’s

now

take

a

look

at

SOAP

binding

as

defined

by

the

WSDL

1.1

specification.
31
)	 (
WSDL

Binding

Support

for
Operations


SOAP

Binding


WSDL1.1

defines a

binding

for

SOAP

1.1

endpoints.

This

binding

provides

the

following

SOAP

protocol

specific

info:


An

indication

that

the

binding

is

bound

to

the

SOAP

1.1

protocol


A

way

of

specifying

an

address

for

a

SOAP

endpoint


The

URI

for

the

SOAP

action

HTTP

header

for

the

HTTP

binding

of

SOAP


A

list

of

definitions

of

headers

that

are

transmitted

as

p
art

of

the

SOAP

envelope
32
)

 (
SOAP

Bindings


Let’s

examine

the

SOAP

binding

of

the

request-response

RPC

operation

over

HTTP

as

defined

in

the

WeatherInfo.wsdl

file

shown

earlier

(see

the

section

titled

Anatomy

of

a

WSDL

Definition

Document).


<soap:binding>

The

<soap:binding>

element

is

defined

in

WeatherInfo.wsdl

as

follows:


<soap:binding
style=”document”

transport=”
http://schemas.xmlsoap.org/so

ap/http”/>
33
)	 (
SOAP

Bindings


<soap:operation>

The

<soap:operation>

element

is

defined

in

WeatherInfo.wsdl

as

follows:


<soap:operation
soapAction=
“h
t
tp://myweather.com/GetWeatherInfo
”/>


The

<soap:operation>

element

defines

the

information

with

r
eg
ar
d

to

communication

style

and

the

SOAP

action

header

at

that

specific

operation

level.
34
)

 (
SOAP

Bindings


<soap:body>

The

<soap
:
body>

element

is
defined

in

WeatherInfo.wsdl

as

follows:


<soap:body

use=”literal”/>


Consider

the

following

example:


<output>
<soap:body

encodingStyle
=”h
t
tp://schemas.xmlsoap.o

rg/soap/encoding/”

namespace=”urn:acmens:acmeservice”

use=”encoded”/>
</output>
35
)	 (
SOAP

Bindings


<soap:address>


The

<soap:address>

element

is

defined

as
follows

in

WeatherInfo.wsdl:


<soap:address
location=

“h
t
tp://myweather.com/provideweatherinfo

”/>


The

<soap:address>

element

specifies

an

address

for

the

given

service

port.
36
)
 (
WSDL

Tools
39
)
 (
WSDL

Tools


WSDL

tools

typically

provide

functionality

in

terms

of

the

following:


WSDL

generation.

Generating

WSDL

from

an

existing

service

component—for

example,

a

J2EE

component

or

a

Java

Bean

component

or

from

scratch.


WSDL

compilation.

Atypical

WSDL

compiler

would

generate

the

necessary

data

structures

and

a

skeleton

for

the

implementation

of

the

service.

The

generated

implementation

skeleton

contains

all

the

methods

(operations)

that

are

described

in

the

given

WSDL

definition.
37
)	 (
WSDL

Tools


WSDL

proxy

generation.

This

functionality

can

read

a

WSDL

and

produce

a

specific

language

binding

(for

example,

Java

or

Perl)

consisting

of

all

the

code

required

to

bind

the

Web

service

and

to

invoke

the

Web

service

functions

at

runtime.

This

functionality

is

typically

used

at

the

client

end.


Many

WSDL

tools

provide

s
uppo
rt

for

these

three

functionalities.


Table

b
e
low
lists

some

of

the

famous

ones

in

the

Java

Web

Services

space.
38
)

 (
TOOL
DOWNLOAD

FROM….
Sun

ONE

Studio

4
wwws.sun.com/software/sundev/jde/index.ht
ml
Systinet WASP
www.systinet.com/wasp
The

Mind

Electric

GLUE
www.themindelectric.com/glue/index.htm
l
IBM

Web

Services
Toolkit
www.alphaworks.ibm.com/tech/webservicest

oolkit/
BEA

WebLogic

Workshop
www.bea.com/products/weblogic/workshop
/easystart/index.shtml
Apache

Axis
http://xml.apache.org/axis
)	 (
WSDL
 Enhancements


The

following

lists

some

of

the

important

enhancements

of

WSDL

1.2

over

WSDL

1.1


WSDL

1.2

provides

s
uppo
rt

for

W3C

Recommendations,

including

X
M
L
Schemas

and

X
M
L

Information

Set.


WSDL

1.2

removes

non-interoperable

features

from

WSDL

1.1.


WSDL

1.2

clearly

defines

HTTP

1.1

binding.


To

obtain

further

information

on

WSDL

1.2,

visit

www.w3.org/2002/ws/desc/.
40
)

 (
Limitations

of

WSDL


WSDL

1.1

has

an

obvious

limitation:


its

incapability

of

being

able

to

describe

complex

business

Web

services,

which

typically

are

constituted
 by

orchestrating

multiple

finer-grained

Web

services.


This

drawback

is

due

to

the

lack

of

support

for

workflow

descriptions

in

WSDL.


How

to

overcome

these

limitations?
41
)	

 (
Limitations

of

WSDL


To

overcome

these

limitations

of

WSDL,

standards

such

as

ebXML

Collaborative

Protocol

Profile/Collaborative

Protocol

Agreement

(CCP/A),

Business

Process

Specification

Schema

(BPSS),

and

Web

Services

Choreography

Interface

(WSCI)

can

be

leveraged.


An

EbX
M
L

set

of

technologies

ca
n

be
used

to

build

business

Web

services.
42
)

 (
25
)

UNIT-VII
 (
Discovering

Web

Services
1
)	 (
Discovering

Web

Services


Service

Discovery


Role

of

service

discovery

in

a

SOA


Service

discovery

mechanisms


UDDI(Universal

Description,

Discovery,

and

Integration)


UDDI

Registries


Uses

of

UDDI

Registry


Programming

with

UDDI


UDDI

data

structures
2
)

 (
Discovering

Web

Services

Support

for

categorization
Registries.

Publishing

A
PI.

Publishing
information
to

Registry

Searching
information
in

Registry
in
UDDI
a
UDDI
a
UDDI

Deleting

information

in

a

UDDI

Registry

Limitations

of

UDDI
3
)	 (
UDDI


UDDI

technology

is

the

core and

one

of

the

building

blocks

of

Web

services

apart

from

SOAP

and

WSDL.


UDDI

enables

the

businesses

providing

services

(in

electronic

form

or

in

any

other

medium)

to

register

information

to

enable

the

discovery

of
their

services

and

business

profile

by

prospective

c
u
st
o
mers

and/or

partners.


it

enables

businesses

to

discover

other

businesses

for

expanding

potential

business

partnerships.
4
)

 (
UDDI


UDDI

presents

businesses

with

an

opportunity

to

step

into

new

markets

and

services.


It

pow
ers

all

kinds

of

businesses,

large,

medium,

or

small,

to

accelerate

their

business

presence

in

this

global

market.


UDDI

initially

started

as

a

join
t

effort

from

IBM,

Microsoft,

and

Ariba.


For

more

information,

visit

the

UDDI
official

Web

site

at

www.uddi.org.
5
)	 (
UDDI

Registries


An
implementation
of
the
UDDI
specification

is

termed

as

a

UDDI

registry.


UDDI

registry

services

are

a

set

of

software

services

that

provide

access

to

the

UDDI

registry.


Address

information

for

locating

the

specified

Web

service


Meanwhile,

registry
services

ca
n

perform

a

plethora

of

other

activities

s
u
c
h

as

authenticating

and

authorizing

registry

requests,

logging

registry

requests,

load-

balancing

requests,

and

so

on.
6
)

 (
4
)

 (
Public

and

Private

UDDI
Registries


A UDDI

registry

can

be

operated

in

two

modes:
 public

m
od
e

and

private

m
od
e
.


A

public

UDDI

registry

is

available

for

everyone

to

publish/query

the

business

and

service

information

on

the

Internet.


Such

public

registries

ca
n

be

a

logical

single

system

built

upon

multiple

UDDI

registry

nodes

t
h
at

have

their

data

synchronized

through

replication.


Thus,

all

the

UDDI

registry
 node
operators

would

each

host

a

copy

of

the

content

and

accessing

any

node

would

provide

the

same

information

and

quality

of

service

as

any

other

operator

node.
7
)	 (
Public

and

Private

UDDI
Registries


A
private

UDDI

registry

is

operated

by

a

single

organization

or

a

group

of

collaborating

organizations

to

share

the

information

that

would

be

available

only

to

the

participating

bodies.


Private

UDDI

registries

ca
n

impose

additional

security

controls

to

protect

the

integrity

of

the

registry

data

and

to

prevent

access

by

unauthorized

users.


A

UDDI

registry

in

itself

is

a

Web

service.


A

Web

service

consumer

queries

t
h
e

UDDI

registry

using

the

SOAP

API

defined

by

UDDI

specification.
8
)

 (
Uses

of

UDDI
Registry


Businesses

ca
n

use

a

UDDI

registry

at
three

levels:


White,

Yellow

&

Green

pages

level.


White

pag
es

level:

Businesses

that

intend

to

register

just

the

very

basic

information

about

their

company,

such

as

company

name,

address,

contact

information,

unique

identifiers

s
u
c
h

as

D-U-N-S

numbers

or

Tax

IDs,

or

Web

services

use

UDDI

as

white

pages.
9
)	 (
Uses

of

UDDI
Registry


Yellow

pages

level.

Businesses

that

intend

to

classify

their

information

based

on

categorizations

(also

known

as

classification

schemes

or

taxonomies)

make

use
 of

the

UDDI

registry

as

yellow

pages.


Green

pages

level.

Businesses

that

publish

the

technical

information

describing

the

behavior and

supported

functions

on

their

Web

services

make

use

of

the

UDDI

registry

as

green

pages.
10
)

 (
Programming

with

UDDI


This

section

introduces

the

APIs

used

for
communicating

with

a

UDDI

registry.


Also,

important

data

structures

and

categorization

s
uppo
rt

of

UDDI

are

discussed.


UDDI

Programming

API


The

UDDI

specification

defines

two

X
M
L
-

based

programming

APIs

for

communicating

with

the

UDDI

registry

node:

inquiry

API

and

publishing

API.
11
)	 (
Inquiry

API


The

inquiry

API

consists

of

X
M
L

messages

defined

using

a

UDDI

Schema,

which

ca
n

be

used

to

locate

information

about

a

business,

s
u
c
h

as

the

services

a

business

offers

and

the

technical

specification

of

those

services

(such

as

a

link

to

a

WSDL

document

describing

the

interface

of

the

service,

the

binding

of

the

service

and

the

URL

where

the

service

is

running,

and

so

on).
12
)

 (
Inquiry

API


AUDDI

p
r
og
rammer

would

use

these

inquiry

APIs

to

retrieve

information

stored

in

the

registry.


list

of

inquiry

API

functions

t
h
at

ca
n

be

used

for

finding

information

in

a

UDDI

registry:


<find_business>


<find_relatedBusinesses>


<find_service>


<find_binding>


<find_tModel>
13
)	 (
Inquiry

API


To

get

further

detailed

information

from

the

UDDI

registry,

the

following

inquiry

API

functions

are

available:


<get_businessDetail>


<get_businessDetailExt>


<get_serviceDetail>


<get_bindingDetail>


<get_tModelDetail>
14
)

 (
Publishing

API


The

publishing

API

consists

of

functions

represented

by

a

UDDI

Schema,

which

defines

X
M
L

messages

t
h
at

ca
n

be

used

to

create,

update,

and

delete

the

information

present

in

a

UDDI

registry.
15
)	 (
Publishing

API


The

following

is

a

list

of
publishing

API

functions

that

can

be

used

for

adding/modifying

information

to

a

UDDI

registry:


<save_business>


<set_publisherAssertions>


<add_publisherAssertions>


<save_service>


<save_binding>


<save_tModel>
16
)

 (
Publishing

API


The

following

is

a

list

of
publishing

API

functions

that

can

be

used

for

deleting

information

from

a

UDDI

registry:


<delete_business>


<delete_publisherAssertions>


<delete_service>


<delete_binding>


<delete_tModel>
17
)	 (
UDDI

Data

Structures


The

information

managed

by

a

UDDI

registry

is

represented

as

XML

data

structures

also

known

as

UDDI

data

structures.


The

UDDI
d
ata

structures

specification

document

defines

the

meaning

of

these

data

structures

and

the

relationship

between

them.


Ultimately,

it

is

these

data

structures

with
which

a

UDDI

client

needs

to

work.
18
)

 (
UDDI

Data

Structures


The

following

are

the

five

p
r
i
mary

UDDI

data

structures defined

in

the

specification:


<businessEntity>


<publisherAssertion>


<businessService>


<bindingTemplate>


<tModel>


Now,

let’s

take

a

look

at

eac
h

of

these

one

by

one.
19
)	 (
UDDI

Data

Structures


<businessEntity>


The

<businessEntity>

data

structure

represents

the

primary

information

about

a

business,

s
u
c
h

as

contact

information,

categorization

of

the

business

according

to

a

specific

taxonomy

or

classification

scheme,

identifiers,

relationships

to

other

business

entities,

and

descriptions

about

that

particular

business.
20
)

 (
UDDI

Data

Structures


<publisherAssertion>


A

business

registered

in

a

UDDI

registry

can

have

active

business

relationships

with

other

businesses.


<businessService>


The

<businessService>

data

structure

represents

the

service

of

a

business.


<bindingTemplate>


The

<bindingTemplate>

structure

consists

of

pointers

to

technical

descriptions

and

access

URLs

of

the

service.
21
)	 (
UDDI

Data

Structures


<tModel>


The

<tModel>

structure

provides

a

description

of

a

particular

specification

or

behavior

of

the

service.


The

<tModel>

str
u
ct
u
re

does

not
 contain

the

service

specification

directly;

instead,

it

contains

a

link

to

the

service
specification,
elsewhere.
which
is
managed
22
)

 (
Primary

UDDI

data

structures
23
)	 (
Support

for
Categorization

in

UDDI
Registries


Categorization—also
known
as

classification

in

JAXR
terminology—is

considered

to

be

the

prominent

functionality

of

any

registry.


Categorization

enables
the

d
ata

to

be

classified

with

the

help

of

various

categorization

systems

(also

known

as

taxonomies

or

classification

schemes),

such

as

an

industry

categorization

system

or

a

geography

categorization

system.
24
)

 (
Limitations

of

UDDI


UDDI
 is

an

evolving

standard.


Currently,

the

most

deployed

version

of

UDDI

(2.0)

is

limiting

in

terms

of

the

information

model

that

it

supports,

especially

when

compared

to

other

registry

specifications

s
u
c
h

as

ebXML

Registry/Repository.


UDDI

provides

support

for

storing

only

the

basic

d
ata

structures,

s
u
c
h

as

businesses,

users,

services,

and

service

technical

descriptions.
25
)	

UNIT-VIII

 (
Web

Services

Interoperability
1
)	 (
Web

Services

Interoperability


Means

of

ensuring

Interoperability


Overview

of

.NET

and

J2EE


Web

Services

Security:


X
M
L

Security

frame

work


X
M
L

Encryption


X
M
L

Digital

Signature


X
KM
S

Structure


Guidelines

for

signing

X
M
L

document
2
)

 (
Means
 of

Ensuring

Interoperability

This

facilitates

inter-application

communication

and

seamless

data

sharing

among

applications

residing

on

a

network,

regardless

of

their

n
a
ti
ve

language

implementation,

operating

systems,

hardware

platforms,

and

th
e

like.


In

turn,

it
 also

enables

the

development

of

compatible

Web

services

by

leveraging
interoperability

among

business

applications
running

across

a

wide

ra
ng
e

of

systems

and

devices.
3
)

	 (
Means
 of

Ensuring

Interoperability


Interoperability

in

Web

services

becomes

a

real

challenge

when

a

service

requestor

finds

problems

while

invoking

a

method

in

the

service

provider

environment

or

when

it

does

not

understand

a

message

sent

by

the

service

provider.


Thus,

it

becomes

essential

for

Web

services

offered

by a

service

provider

to

ensure

that

the

services

are

usable

by

a

variety

of

service

requestor

clients

to

the

best

possible

accommodation

of

bo
t
h

conforming

and

non-conforming

SOAP

implementations.
4
)

 (
Microsoft

.NET

Framework:

An
Overview


Microsoft

.NET

is

p
art

of

the

Microsoft
.NET

platform—Microsoft’s

strategy

for

developing

distributed

applications

through

X
M
L

Web

services.


The

Microsoft

.NET

Framework

provides

a

full-fledged

development

environment

for

developing

X
M
L

Web

services

in

a

Microsoft

Windows–based

environment.


It

facilitates a

runtime

infrastructure

and

APIs
 for

developing

Web

services

applications

using

a

variety

of

object-oriented

programming
languages

such

as

C#,

Visual

Basic,

and

so
forth.
5
)
	
 (
Microsoft

.NET

Framework:

An
Overview


The

.NET

Framework

provides

the

infrastructure

for

defining

the

overall

.NET

platform.


Microsoft

provides

.NET

compilers

that

generate

a

new

code

referred

to

as

Microsoft

Intermediate

Language

(MSIL).


MSIL

is

a

CPU-independent

code

instruction,

which

is

able

to

r
un

on

any

system

supporting

its

native

machine

language.
6
)

 (
Microsoft

.NET

Framework:

An
Overview


The

.NET

compilers

provided

by

Microsoft

are

as

follows:


VB.NET

(Visual

Basic

for

.NET)


C++

.NET

(Visual

C++

for

.NET)


ASP.NET

(Microsoft

ASP

for

.NET)


C#
 .NET

(New

language

for

.NET)


JScript

(Jscript

for

.NET)


The

Microsoft

.NET

Framework

consists

of

two

core

components,

namely


C
o
mm
on
 Language

Runtime

(CLR)


.NET

Framework

Class

Library
7
)	
 (
Common

Language

Runtime

(CLR)


The

C
o
mm
on

Language

Runtime,

or

CLR,

provides

a

managed

runtime

environment

(.NET

Engine)

for

the

.NET

Framework.


CLR

enables

applications

to

install

and

execute

code,

and

it

provides

services

such

as

memory

management,

including

garbage

collection,

threading,

exception

handling,

deployment

support,

application

runtime

security,

versioning,

and

so

on.


CLR

provides

a

set

of

JIT

(just-in-time)

compilers,

which

compile

MSIL

to

produce

native

code

specific

to

the

target

system.
8
)

 (
Common

Language

Runtime

(CLR)


CLR

defines

a

set

of

rules

as

C
o
mm
on

Type

System

(CTS)

and

Common

Language

System

(CLS)

t
h
at

specifies

the
.NET-supported

languages

required

to

use

for

developing

compilers

supporting

a
.NET

platform.


This

enables

the

compiler

vendors

to

develop

.NET-compliant

compilers

and

to

perform

crosslanguage

integration.


Cross

language

integration

enables

.NET-

compliant

languages

to

r
un

and

interact

with

one

another

in

a

.NET

environment.
9
)

	 (
.NET

Framework

Class Library


The

.NET

Framework

class

library

acts

as

the
 b
ase

class

library

of

the

.NET

Framework.


It

provides a

collection

of

classes and

a

ty
p
e

system

as

foundation

classes

for
.NET

to

facilitate

C
L
R
.


It

is

included

as

p
art

of

the

.NET

Framework

S
DK
.


The

class

libraries

are

reusable

object-

oriented

classes

that

s
uppo
rt

.NET

programming

tasks

like

establishing

database

connectivity,

d
ata

collection,

file

access,

and

so

on.
10
)

 (
.NET

Framework

Class Library


The

class

libraries

also

s
uppo
rt

the

rapid

development

of

software

applications

such

as

the

following:


Console

applications


Windows

GUI

applications


Windows

services


ASP

.NET

applications


.NET

XMLWeb

services


.NET

Scripting

applications


.NET

Client

applications
11
)	
 (
Overview

of

J2EE


As

discussed
 in

earlier

,

X
M
L

is

a

cross

platform

neutral-data

format

and

Java

is

a

cross

platform

programming

language.


These

technologies

provide

a

perfect

solution

for

developing

network

independent

and

extensible

applications;

they

enable

interoperability,

portability,

and

flexibility.


They

also

provide

a

standard

solution

for

integrating

heterogeneous

applications

and

systems

ranging

from

cell

phones

to

large-scale

enterprise

applications.
12
)

 (
Overview

of

J2EE


An

application

ca
n

be

written

in

Java

and
ported

to

various

supported

platforms

(hence,

the

“Write
 Once,

Run

Anywhere”

mantra

trademarked

for

Java

by

Sun

Microsystems).


In

addition,

X
M
L

also

has

the

capability

to

talk

to

Java

as

well

as

non-Java

applications

running

on

diverse

platforms.


With

the

overwhelming

success

of

XML

and

Java

in

enterprise

applications,

the

use

of

XML

has

required

the

development

of

parsers

and

other

supporting

technologies

to

process

the

X
M
L

data.
13
)	
 (
Overview

of

J2EE


The

introduction

of

the

Java

X
M
L

APIs

provides

standard

interfaces

t
h
at

are

independent

of

any

vendor-specific

implementation.


This

API

toolkit,

which

is

commonly

referred
to

as

the

Java

Web

Services

Developer

Pack

(JWSDP),

provides

Java

developers

with

a

one-stop

API

solution

for

the

development

of

Java

Web

service

applications.
14
)

 (
The

core

components

of

JWSDP


Java

X
M
L

APIs

for

Web

services


Java

XML

Pack


Apache

Tomcat

container


JWSDP

Registry

Server


JavaServer

Pages

Standard

Tag

libraries


ANT

Build

tool
15
)

	 (
Java

XML

Pack


Java

X
M
L

Pack

is

very

beneficial

for

Web

services

development

because

it

leverages

most

of

the

aspects

of

X
M
L
-

related

processing

in

a

typical

Web

service

environment.

At

the

time

of

this

book’s

publication,

the

Sun

Web

services

pack

contains

the

following

Java

X
M
L

APIs:
16
)

 (
Java

XML

API


Procedure-oriented

APIs.


Java

API

for

XML

Processing

(JAXP)


Java

API

for

X
M
L

Registries

(JAXR)


Java

API

for

XML-based

RPC

(JAX-RPC)


SOAP

with

Attachments

API

for

Java

(SAAJ)


Java

API

for

X
M
L

Messaging

(JAXM)


Document-oriented

APIs.


Java

API

for

X
M
L

Processing

(JAXP)


Java

Architecture

for

X
M
L

Binding

(JAXB)
17
)
	 (
Java

XML

API


Java

API

for

XML
Parsing

(JAXP)


FOR

PARSING:


Simple

API

for

X
M
L

(SAX)


Document

Object

Model

(DOM)

API


FOR

TRANSFORMATIONS:


Extensible
Stylesheet
Language

Transformation

(XSLT)

API
18
)

 (
JAXP

using

the

SAX

processing

model.
19
)
	 (
JAXP

using

the

DOM
processing

model
20
)

 (
Java

binding

process
21
)

	 (
JAXM

messaging

over

HTTP
22
)

 (
Web

Services

example

using

JAX-RPC
23
)	
 (
Accessing

service

registries

with

JAXR
24
)

 (
Web

Services

Security


Challenges

of

securing

Web

services


Technologies
services
behind
securing
Web


Rapid-fire

cryptography


X
M
L

encryption


X
M
L

signatures


XML

Key

Management

Specification

(XKMS)


Security

Assertions

Markup

Language
(SAML)


XMLAccess

Control

Markup

Language

(XACML)
25
)
	 (
Challenges

of

Securing

Web

Services


The

m
ain

benefit

of

Web

services

architecture

is

the

ability

to

deliver

integrated,

interoperable

solutions.


Ensuring

integrity,

confidentiality,

and

security

of

a

Web

service

by

applying

a

well-defined

security

model

is

important

for

both

t
h
e
Web

services
 providers

and

their

consumers.


Defining

a

comprehensive

security

model

for

Web

services

requires

the

integration

of

currently

available

security

processes

and

technologies

with

the

evolving

security

technologies.
26
)

 (
Technologies

behind

Securing

Web
Services


X
M
L

Encryption


XML

Signature

(XML

DSIG)


Security

Assertions
 Markup

Language

(SAML,

pronounced

“sam-el”)


XMLAccess

Control

Markup

Language

(XACML)


X
M
L

Key

Management

Services

(XKMS)
27
)
	
 (
Rapid-Fire

Cryptography


Encryption

and

digital

signatures

are

a
part

of

a

bigger

science

of

cryptography.


Cryptography

is

the

art

of

secret
writing,

the

enciphering

and

deciphering

of

messages

in

secret

code

or

cipher,

as

many

would

put

it.


Four

Goals

of

Cryptography


Confidentiality


Authentication


Integrity


Non-repudiation
28
)

 (
Goals

of
 Cryptography


Confidentiality


Confidentiality

deals
with

ensuring

that

only

authorized

parties

are

able

to

understand

the

data.


Unauthorized

parties

may

know

t
h
at

the

data

exists,

but

they

should

not

be

able

to

understand

what

the

data

is.


Thus,

when

the

d
ata

is

transmitted

on

the

wire,

unauthorized

parties

ca
n

v
i
e
w

the

data

by

sniffing

in

between,

but

our

data

would

still

remain

confidential

as

long

as

the

sniffers

are

unable

to

understand

it.
29
)	

 (
Goals

of
 Cryptography


Confidentiality

is

made

possible

through
encryption.


Encryption

is

the

process

of

converting

a

particular

message

into

scrambled

text,

also

known

as

ciphertext,

by

applying

some

cryptographic

algorithm

and

secret

information.


Cryptographic

algorithms

are

known

as

ciphers,

and

the

preencrypted

form

of

the

message

is

known

as

plaintext.


Only

people

with

secret

information

with

which

the

ciphertext

was

generated

then

would

be

able

to

unscramble

or

decrypt
 the

message.
30
)

 (
Goals

of
 Cryptography


Authentication

ensures

the

identity

of

the
party

in

a

given

security

domain.


Usually,

this

involves

having

some

sort

of

password

or

key through

which

the

user

would

prove

his

or

her

identity

in

a

particular

security

domain.


Authentication
is

extremely

important

for

services

to

be

able

to

tell

to

whom

all

they

are

providing

their

services.


Authentication

forms

the

basis

for

authorization

that

deals

with

managing

access

to

protected

resources

by

an

authenticated

user

based

on

his

or

her

policies.
31
)
	 (
Goals

of
 Cryptography


Integrity

is

about

protecting

sensitive
information
modifications.
from
unauthorized


In

the

case

of

a

message

being
transmitted

on

the

wire,

integrity

ensures

that

the

message

received

by

the

recipient

was

the

same

message

t
h
at

was

sent

originally

by

the

sender,

t
h
at

the

message

has

not

been

tampered

with

since

it

was

sent.


Different

hashing

algorithms

are

used

to

generate

a

sort
of

a

checksum

to

guarantee

integrity.
32
)

 (
Goals

of
 Cryptography


Repudiation

is

to

refuse

to

accept
something.


Non-repudiation

is

a

technique

in

which

one

party

ensures

that

another

party

cannot

repudiate,

or

cannot

refuse

to

accept,

a

certain

act.


Non-repudiation

f
o
rms

the

basis

of

electronic

co
mmerce
.


Digital

signatures

can

be

used

to

provide

non-repudiation

in

computer

security

systems.
33
)	

 (
Cryptography

Algorithms


One-Way

Hash

Function

Algorithms.


Symmetric
Ciphers).


Asymmetric

Ciphers)
Algorithms
(Symmetric
Algorithms
(Asymmetric


Digital

Signatures


Digital

Certificates

etc
34
)

 (
Symmetric

Cryptography
35
)	
 (
Asymmetric

Cryptography
36
)

 (
Digital
Signature

Example
37
)	
 (
XML

Encryption


The

need

for

an

X
M
L

Encryption

standard

was

conceived

quite

some

time

after

the

X
M
L

Signature

Working

Group

was

formed.


X
M
L

Signature

was

entirely

focused

on

expressing

digital

signatures

in

X
M
L,

and

hence,

precluded

any

work

on

Encryption.


People

soon

realized

that

X
M
L

was

becoming

the

language

of

the

Web

and

that

the

industry

would

need

mechanisms

for

not

only

digitally

signing

X
M
L

entities

but

also

for

encrypting

them.
38
)

 (
XML

Signatures


The

X
M
L

Signature

specification,

in

its

very

simplest

form,

provides

a

mechanism

for

applying

digital

signatures

to

X
M
L

documents

and

other

Internet

resources

and

encoding

those

signatures

as

X
M
L.


The

go
a
l

behind

using

X
M
L

in

digital

signatures

is

to

provide

strong

integrity

for

message

authentication,

signer

authentication,

and

non-repudiation
services

for

data

of

any

type,

no

matter

if
this

d
ata

is

located

within

the

X
M
L

document

that

bears

the

digital

signature

or

elsewhere.
39
)
	

 (
XML

Key

Management

Specification
(XKMS)


X
M
L

Key

Management

Specification

is

the
next

step

in

the

evolution

of

the

Public
Key

Infrastructure

(PKI).


PKI

has

long

b
ee
n

used

to

mitigate

the

risks

of

automated

electronic

business

environments.


X
KM
S

combines

the

interoperability

of

X
M
L

with

the

security

of

PKI

to

provide

an

easy

method

of

securing

PKI-based

applications.


X
KM
S

Web

services

have

b
ee
n

hosted

at

http://xkms.verisign.com
40
)

 (
XKMS

Usage

Diagram
41
)	 (
XKMS

Components


The

X
M
L

Key

Management

Specification

relies

upon

the

other

two

X
M
L

security

standards

from

W3C

as

follows


X
M
L

Encryption


X
M
L

Signatures


X
KM
S

functionalities

have

been

divided

into

two

sub-specifications:


X
M
L

Key

Information

Service

Specification

(X-KISS)


X
M
L

Key

Registration

Service

Specification

(X-KRSS)
42
)

 (
X-KISS


X-KISS

defines

a

protocol

t
h
at

Web

services

can

use

to

delegate

the

processing

of

key

information

associated

with

an

X
M
L

signature,

X
M
L

encryption,

or

any

other

public

key
,

to

a

trust

services

provider

Web

service.


Its

functions

mainly

include

locating

a

required

public

key

and

describing

the

information

that

binds,

such

as a key

to

the

owner

of

its

corresponding

private

key
.
43
)	 (
X-KRSS


X-KRSS

defines

a

protocol

that

a

Web

service

can

use

to

register

a

key

pair

supplying

the

proper
information

pertaining

to

the

holder

of

that

key

pair.


That

key

pair

t
h
e
n

would

be

used

in

the

subsequent

requests

made

using

an

X-

KISS

protocol.


Both

of

these

protocols

utilize

SOAP

and

WSDL.
44
)

 (
XKMS

Implementations


Implementations

of

X
KM
S

are

available

for
the

Java

platform

as

follows:


Verisign

X
KM
S

Toolkit

(also

a

part

of

Verisign’s

Trust

Services

Integration

Kit

1.0)

(
www.xmltrustcenter.org/xkms/index.htm).


Entrust
X
KM
S
Toolkit

(
http://xkms.entrust.com/xkms/index.htm).
45
)	 (
XKMS

Locate

Service
46
)

 (
X-KRSS

Functions


XKRSS
 handles

the

following

functions:


X-KRSS

Registration

Service-
Client

Web

services

use

a

registration

service

implemented

by

an

XKMS

trust

services

provider

to

register

a

key

pair

and

the

associated

binding

information.


X-KRSS

Revocation

Service-
Aregistration

service

may

permit

client

Web

services

to

revoke

previously

issued

assertions

about

the

validity

of

their

keys.


X-KRSS

Key

Recovery

Service
-
Akey

recovery

is

required

when

the

holder

of

the

key

pair

loses
the

private

key.
47
)	

15. Additional topics
Syllabus with Additional Topics
1. XML.
2. Java Development Frameworks.
There are plenty of Java frameworks available on the web, and developers use them quite frequently to build websites. These frameworks offer lots of functions and reduce the working hours by leaps and bounds. These frameworks make the coding process faster, thanks to their inbuilt modules and functions.
Sometimes too many options can confuse you and that is exactly the case with Java frameworks. If you ask for suggestions in web development and programming forums, every developer will give you different suggestions based on his personal likes and dislikes. As a result, it becomes very difficult to select the one framework that will fit all your requirements.
Here in this article, I will discuss the features of some well known Java frameworks and I assure you that my sole intention is to not influence your decision. Read the following paragraphs to get a comprehensive idea and then decide, what suits you best?
[image: play]
Play-- It’s a powerful and lightweight open source web development framework, loved by thousands of developers all over the world for its scalability, speed and performance. It uses the Java and Scala programming languages and if you have knowledge in Scala, it should not take more than an hour to get used to with this framework. The user interface of Play is simple and intuitive, thus it does not take time to understand the basic features. One of the key features of Play is that you don’t need to compile your codes, just deploy and restart. While developing an app, you can easily see the new changes by simply hitting the refresh button. This feature saves a lot of time during web development. It has just one config file and rest of the configuration is done automatically. Play also comes with testing tools that let developers test their application within the framework.
However, Play is not flawless. It has some weaknesses and one of them is version incompatibility. For example, Play 1 is not compatible with Play 2. Besides, if you know Scala, only then it’s useful for you. Otherwise, you have to learn Scala and it’s a difficult language to learn.
[image: grails]
Grails-- It’s an open source web development framework which is built upon frameworks like Hibernate, Spring and GROMS. One of the strong positive qualities of Grails is the Enterprise Java Beans or EJB support. EJB helps developers start their work immediately. They don’t need to configure the XML. This framework offers speedy development features and lets you create highly robust and scalable applications. There are plenty of ready-made modules available in Grails and you can use them for your work. It offers unit testing feature and based on your requirements, you can integrate other testing frameworks as well.
[image: spring]
Spring -- It’s one of the most popular frameworks that help you create high performing and testable applications. It takes care of petty usability features so that you don’t have to code everything and can focus on the main features of your project. One of the unique advantages of Spring is that it lets you connect various components and as a result, you can create a solution for intricate problems. Some of the other features it offers are cloud support, support to traditional database rdbms as well as new nosql, better security and compatibility to mobile.
[image: struts-2]
Struts 2-- This framework has been created by Apache foundation. This open source web application framework comes with a collection of utilities and set of JSP custom tag libraries. The core architecture is pretty simple and extendible. The features of Struts 2 are almost similar to Spring MVC except that Struts is faster and provides better UI support. Struts 2 has been in the market for a long time and developers still prefer it high time.
[image: eclipse]
Eclipse-- It’s an open source, multi language, Integrated Development Environment. This framework is used for creating rich client side apps. With the help of Eclipse, you can build native applications that can run on Windows, Safari and Linux. It also comes with updated features for deploying desktop apps. Developers can code in Eclipse using a number of languages including SCALA, Ruby, C, C++ and COBOL. The framework can be extended easily using plug-ins.

16. University Question papers of previous years

[image:]

[image: WS-QP-250414-4-2]
17. Question Bank

UNIT-1
1. a) What is Distributed Computing? Explain the importance of distributed computing?
 b) Explain the concept of service oriented architecture.
2. a) Explain the following distributed computing technologies:
	1) client/server
	2) CORBA
	3) JAVA RMI
	4) Microsoft DCOM
	5) MOM
 b) What are the benefits and challenges of using distributed computing?
3. a) What is the role of J2EE and XML in distributed computing?
 b) What are the benefits and challenges of using web services?
4. Explain the emergence of web services and SOA.

UNIT-2
1. a) Explain briefly the tools and technologies used in web service implementation.
 b) What are the benefits and challenges of using web services?
2. With a neat diagram, explain the architecture of a web service and its core building blocks.
3. a) Define Web Services & Explain its basic operational model.
 b) Explain the following Web Service Standards:
	1) XML
	2) SOAP
	3) WSDL
	4) UDDI
4. Briefly explain about other industry standards supporting Web Services.

UNIT-3
1. With a neat diagram, explain the architecture of a web service and its characteristics.
2. Explain in detail about the standards and technologies available for implementing web services.
3. a) With a neat diagram, explain the web services communication.
 b) What are the basic steps of implementing web services?
4. Explain the process of developing web services enabled applications.

UNIT-4
1. With a neat diagram, explain the SOAP message structure.
2. a) Explain the basic SOAP message exchange model.
 b) Explain the SOAP RPC communication model.

3. a) What is SOAP, explain about its specifications.
 b) What do you understand about anatomy of a SOAP message?
4. What are the various steps involved in implementing a web service with Java and Axis?.

UNIT-5
1. a) What are the various steps involved in implementing a web service with Java and Axis?
 b) Write a java program that takes five integers and returns the maximum of them. Explain how this can be deployed as web service with Axis on Tomcat server. Write a java client that accesses this service.
2. a) What are the SOAP Web Service building steps?
 b) What are the limitations of SOAP?
3. What is SOAP message exchange model? Explain with neat sketch.
4. What is SOAP communication? Explain its types.
UNIT-6
1. What is the role of WSDL in the world of Web services? Explain.
2. Explain the anatomy of WSDL definition document.
3. a) Explain the web services life cycle.
 b) What are the limitations of WSDL?
4. What are the various WSDL Tools? Explain.

UNIT-7
1. With is service discovery? Explain the role of service discovery in a SOA.
2. What are the various service discovery mechanisms?

3. a) Explain the web services life cycle.
 b) What are the limitations of UDDI?
4. a) Explain the UDDI Registries. What are the uses of UDDI registry?
 b) What are the limitations of UDDI?

UNIT-8
1. What is Web Services Interoperability? Explain.
2. What are the means of ensuring interoperability? Give overview of .NET & J2EE.

3. What is web services security? How do you achieve it?
4. Write short notes on the following
 i) J2EE technology w.r.t . web services
 ii) XKMS structure

18. Assignment Questions

UNIT-1
2. a) What is Distributed Computing? Explain the importance of distributed computing?
 b) Explain the concept of service oriented architecture.
2. a) Explain the following distributed computing technologies:
	1) client/server
	2) CORBA
	3) JAVA RMI
	4) Microsoft DCOM
	5) MOM
 b) What are the benefits and challenges of using distributed computing?
3. a) What is the role of J2EE and XML in distributed computing?
 b) What are the benefits and challenges of using web services?
4. Explain the emergence of web services and SOA.

UNIT-2
1. a) Explain briefly the tools and technologies used in web service implementation.
 b) What are the benefits and challenges of using web services?
2. With a neat diagram, explain the architecture of a web service and its core building blocks.
3. a) Define Web Services & Explain its basic operational model.
 b) Explain the following Web Service Standards:
	1) XML
	2) SOAP
	3) WSDL
	4) UDDI
4. Briefly explain about other industry standards supporting Web Services.

UNIT-3
1. With a neat diagram, explain the architecture of a web service and its characteristics.
2. Explain in detail about the standards and technologies available for implementing web services.
3. a) With a neat diagram, explain the web services communication.
 b) What are the basic steps of implementing web services?
4. Explain the process of developing web services enabled applications.

UNIT-4
1. With a neat diagram, explain the SOAP message structure.
2. a) Explain the basic SOAP message exchange model.
 b) Explain the SOAP RPC communication model.

3. a) What is SOAP, explain about its specifications.
 b) What do you understand about anatomy of a SOAP message?
4. What are the various steps involved in implementing a web service with Java and Axis?.

UNIT-5
1. a) What are the various steps involved in implementing a web service with Java and Axis?
 b) Write a java program that takes five integers and returns the maximum of them. Explain how this can be deployed as web service with Axis on Tomcat server. Write a java client that accesses this service.
2. a) What are the SOAP Web Service building steps?
 b) What are the limitations of SOAP?
3. What is SOAP message exchange model? Explain with neat sketch.
4. What is SOAP communication? Explain its types.

UNIT-6
1. What is the role of WSDL in the world of Web services? Explain.
2. Explain the anatomy of WSDL definition document.

3. a) Explain the web services life cycle.
 b) What are the limitations of WSDL?

4. What are the various WSDL Tools? Explain.

UNIT-7
1. With is service discovery? Explain the role of service discovery in a SOA.
2. What are the various service discovery mechanisms?

3. a) Explain the web services life cycle.
 b) What are the limitations of UDDI?
4. a) Explain the UDDI Registries. What are the uses of UDDI registry?
 b) What are the limitations of UDDI?

UNIT-8
1. What is Web Services Interoperability? Explain.
2. What are the means of ensuring interoperability? Give overview of .NET & J2EE.

3. What is web services security? How do you achieve it?
4. Write short notes on the following
 i) J2EE technology w.r.t . web services
 ii) XKMS structure

19. Unit wise Quiz Questions and long answer questions

UNIT-1
1. Web services are pretty much guaranteed to be at the heart of the next generation of []
(A) Distributed systems (B) real time systems (C) stand alone systems (D) All
 2. The _____defines a Web service as a software system designed to support interoperable
machine- to-machine interaction over a network []
(A) SOAP (B)REST (C) W3C (D)None
3. _____________ is the most important benefit of Web Services []
(A) Usability (B) Reusability (C) Deployability (D) Interoperability
4. Extend SOAP ________________________
5. Web services that rely on synchronous communication are usually ____________________oriented
6. XML became a specification at the World Wide Web Consortium (W3C) in the year _________
7. What is Distributed Computing? Explain the importance of distributed computing?
 8. Explain the concept of service oriented architecture.
9.Explain the following distributed computing technologies:
	1) client/server
	2) CORBA
	3) JAVA RMI
	4) Microsoft DCOM
	5) MOM
 10.What are the benefits and challenges of using distributed computing?
11. What is the role of J2EE and XML in distributed computing?
 12. What are the benefits and challenges of using web services?
13. Explain the emergence of web services and SOA.
14. Can you name different kinds of web services -----------------------------
15. What’s different in RESTful web services -------------------------------------

UNIT-2
1. Which of the following are the core building blocks of web services []
(A)Transport (B) message format (C) description&discovery (D)All
2. Which provides a standard way of packaging messages []
(A) Message format (B)SOAP (C)Docs (D)None
3. In Web API development in Web services emphasis is actually taken as []
(A) From SOAP to REST (B) From REST to SOAP (C)From XML (D)None
4. Expand REST __________________
5. Web services need to be scalable, secure, and efficient, especially as they ____________
6. Web APIs allow the combination of multiple Web services into new applications known as ____________

7. Explain briefly the tools and technologies used in web service implementation.
 8. What are the benefits and challenges of using web services?
9. With a neat diagram, explain the architecture of a web service and its core building blocks.
10.Define Web Services & Explain its basic operational model.
 11. Explain the following Web Service Standards:
	1) XML
	2) SOAP
	3) WSDL
	4) UDDI
12. Briefly explain about other industry standards supporting Web Services.
13. How can one access a class as a web service----------------------------
14. How can one access the web service class method via internet----------------------------
15. How a SOAP message is structured-----------------------------------

UNIT-3
1. The UDDI specification includes following categories of APIs for accessing UDDI services from applications []
(A) Inquiry APIs (B)publishers APIs (C)Both A&B (D)None
2. Inspection of SOAP messages should also be done in the following phase []
(A) Coding (B) Test (C) Design (D) All
3. How to package the files into a WAR file in web services []
(A) Using compiletool (B) using deploytool (C) Both A&B (D) None
4. Which one of the following is being explored as a means for streamlining the throughput requirements of XML []
(A) CORBA (B) Decimal XML (C) Binary XML (D) All
5. The Web Service Implementation Methodology is iterative and _________
6. Protecting the message content from being _________without detections are primary security concerns
7. Transport layer security mechanism provides ________ messages per second
8. Real-world distributed ________computing requires more than a communication mechanism
9. With a neat diagram, explain the architecture of a web service and its characteristics.
10. Explain in detail about the standards and technologies available for implementing web services.
11. With a neat diagram, explain the web services communication.
 12.What are the basic steps of implementing web services?
13. Explain the process of developing web services enabled applications.
14. What is the alternate solution to Response Caching---------------------------
15. Brief few drawbacks of using GET and POST methods to communicate with the web
Service------------------------------------

UNIT-4
1. This markup language is considered to be extensible because of its unlimited and self-defining markup symbols.
a. HTML
b. XHTML
c. XML
d. W3C
2. This lightweight protocol provides a way for programs to interact with each other, even if using different operating systems and located behind a firewall.
a. CORBA
b. SOAP
c. RMI
d. DCOM
3. This XML-based language is used to describe the services a business offers and to provide a way for individuals and other businesses to access those services electronically.
a. Xerces
b. X-Box
c. XUL
d. WSDL
4. This XML-based registry is intended as on online Internet registry for businesses worldwide.
a. Universal Plug and Play
b. UDDI
c. Uniform Resource Locator
d. UDF
5. This platform simplifies application development and decreases the need for programming and programmer training by creating standardized,reusable modular components.
a. GDMO
b. JES2
c. J2EE
d. JNDI
6. This method ensures that each XML element type and attribute name has a unique identity.
a. namespace
b. fully-qualified domain name
c. Multiprotocol Label Switching
d. named pipe
7. This is a data structure representing a service type in a Universal Description, Discovery, and Integration registry.
a. model-view-controller
b. tModel
c. Venn diagram
d. exploratory model
8. This application program interface (API) from Sun Microsystems supports messaging between computers in a network.
a. write once, read many
b. Short Message Service
c. Simple Mail Transfer Protocol
d. Java Message Service
9. This term encompasses the plans, methods, and tools aimed at modernizing,consolidating, and coordinating the computer applications in an enterprise.
a. EAI
b. EDI
c. grasping plan
d. decision support system
10. This XML extension is a standard way to describe how to transform the structure of an XML document into an XML document with a different structure.
a. extract, transform, load
b. tree structure
c. XSLT
d. phase change
11. With a neat diagram, explain the SOAP message structure.
12. a) Explain the basic SOAP message exchange model.
 b) Explain the SOAP RPC communication model.

13. a) What is SOAP, explain about its specifications.
 b) What do you understand about anatomy of a SOAP message?
14. What are the various steps involved in implementing a web service with Java and Axis?
15. Explain few disadvantages of Response Caching--------------------------

UNIT-5
1) Define Web Service---------------------------------
2) What is new in this field for past few years---
3) Give me an example of real web service--
4) How you define web service protocol stack--------------------
5) Can you define each of these layers of protocol stack----------------------------
6) Define XML – RPC----------------------------------
7) Define SOAP----------------------------------
8) Define WSDL------------------------------------
9) What kind of security is needed for web services---------------------------------
10) Do you have any idea about foundation security services-----------------------
11. What are the various steps involved in implementing a web service with Java and Axis?
 12. Write a java program that takes five integers and returns the maximum of them. Explain how this can be deployed as web service with Axis on Tomcat server. Write a java client that accesses this service.
13. What are the SOAP Web Service building steps?
14. What are the limitations of SOAP?
15. What is SOAP message exchange model? Explain with neat sketch.
16. What is SOAP communication? Explain its types.

UNIT-6
1.Define Entrust Identification Service--------------------
 2.What UDDI means-----------------------------
3.Define Entrust Entitlements Service----------------------------
4. Define Entrust Privacy Service---------------------------------------
5. What do you mean by PKI------------------------------------
6.What tools are used to test a web service---------------------------------
 7.Differentiate between a SOA and a Web service------------------------------
8.Discuss various approaches to develop SOAP based web service----------------------------
9.If you have to choose one approach, then what will be your choice------------------------------------
10.Is there any special application required to access web service------------------------------
11. What is the role of WSDL in the world of Web services? Explain.
12. Explain the anatomy of WSDL definition document.

13. Explain the web services life cycle.
14.What are the limitations of WSDL?

15. What are the various WSDL Tools? Explain.

UNIT-7
1.Can you name few free and commercial implementations for web services----------------------
2.Name browser that allows access to web service-------------------------
 3.What is REST----------------------------
 4.How one can provide API to users------------------------------
 5.Name the various communication channels in web service----------------------------------
 6.How can you document web service--
 7.What are the situations, when we need ASP.NET web services------------------------------
 8.What are distributed technologies-----------------------------
 9.Differentiate between web services, CORBA and DCOM---------------------------------------
10. Give few benefits of web services--

11. With is service discovery? Explain the role of service discovery in a SOA.
12. What are the various service discovery mechanisms?

13. Explain the web services life cycle.
 14.What are the limitations of UDDI?
15. Explain the UDDI Registries. What are the uses of UDDI registry?
16. What are the limitations of UDDI?

UNIT-8
1.Can you name some standards used in web services--------------------------
 2.Explain in brief, what DISCO is----------------------------
3. Explain in brief, what UDDI is----------------------------
4.Explain the .NET web services supported data types-----------------------
5.How a .NET web service is tested---------------------------------
 6.How a .NET web service is consumed-----------------------
 7.Can you name the two Microsoft solutions for distributed applications--------------------
 8.Differentiate between .NET Web Services and .NET Remoting----------------------
 9.Name the components to be published while deploying a Web Service---------------------
 10.What are the steps performed by the client to access a web service-----------------------------
11. What is Web Services Interoperability? Explain.
12. What are the means of ensuring interoperability? Give overview of .NET & J2EE.

13. What is web services security? How do you achieve it?
14. Write short notes on the following
 i) J2EE technology w.r.t . web services
 ii) XKMS structure.
15.How web services are implemented in .NET---------------------------------

20. Tutorial problems

UNIT-1
1. a) What is Distributed Computing? Explain the importance of distributed computing?
 b) Explain the concept of service oriented architecture.
2. a) Explain the following distributed computing technologies:
	1) client/server
	2) CORBA
	3) JAVA RMI
	4) Microsoft DCOM
	5) MOM
 b) What are the benefits and challenges of using distributed computing?
3. a) What is the role of J2EE and XML in distributed computing?
 b) What are the benefits and challenges of using web services?
4. Explain the emergence of web services and SOA.

UNIT-2
1. a) Explain briefly the tools and technologies used in web service implementation.
 b) What are the benefits and challenges of using web services?
2. With a neat diagram, explain the architecture of a web service and its core building blocks.
3. a) Define Web Services & Explain its basic operational model.
 b) Explain the following Web Service Standards:
	1) XML
	2) SOAP
	3) WSDL
	4) UDDI
4. Briefly explain about other industry standards supporting Web Services.

UNIT-3
1. With a neat diagram, explain the architecture of a web service and its characteristics.
2. Explain in detail about the standards and technologies available for implementing web services.
3. a) With a neat diagram, explain the web services communication.
 b) What are the basic steps of implementing web services?
4. Explain the process of developing web services enabled applications.

UNIT-4

1. With a neat diagram, explain the SOAP message structure.
2. a) Explain the basic SOAP message exchange model.
 b) Explain the SOAP RPC communication model.

3. a) What is SOAP, explain about its specifications.
 b) What do you understand about anatomy of a SOAP message?
4. What are the various steps involved in implementing a web service with Java and Axis?.

UNIT-5

1. a) What are the various steps involved in implementing a web service with Java and Axis?
 b) Write a java program that takes five integers and returns the maximum of them. Explain how this can be deployed as web service with Axis on Tomcat server. Write a java client that accesses this service.
2. a) What are the SOAP Web Service building steps?
 b) What are the limitations of SOAP?
3. What is SOAP message exchange model? Explain with neat sketch.
4. What is SOAP communication? Explain its types.

UNIT-6
1. What is the role of WSDL in the world of Web services? Explain.
2. Explain the anatomy of WSDL definition document.

3. a) Explain the web services life cycle.
 b) What are the limitations of WSDL?

4. What are the various WSDL Tools? Explain.

UNIT-7
1. With is service discovery? Explain the role of service discovery in a SOA.
2. What are the various service discovery mechanisms?

3. a) Explain the web services life cycle.
 b) What are the limitations of UDDI?
4. a) Explain the UDDI Registries. What are the uses of UDDI registry?
 b) What are the limitations of UDDI?

UNIT-8
1. What is Web Services Interoperability? Explain.
2. What are the means of ensuring interoperability? Give overview of .NET & J2EE.

3. What is web services security? How do you achieve it?
4. Write short notes on the following
 i) J2EE technology w.r.t . web services
 ii) XKMS structure.

21. Known gaps ,if any and inclusion of the same in lecture schedule

· Required practical session

22. Discussion topics , if any
	Tutorial No.
	Topic to be discussed

	T1
	Data mining functionalities
And Data warehousing architecture

	T2
	Multi dimensional Data model OLAP operations

	T3
	Data cleaning and Data integration

	T4
	Data mining primitives and DMQL

	T5
	Attribute Oriented Induction (AOI) for Data characterization

	T6
	FP – growth Algorithm (Mining Frequent Item sets)

	T7
	Issues regarding classification and production

	T8
	Partitioning and density based method in cluster analysis

23 References, Journals, websites and E-links
REFERENCES:
1	Building Web Services with Java, 2nd Edition, S. Graham and others Pearson Edn., 2008
2	Java Web Services, D.A Chappell & T. Jewell, O’Relly,SPD.
3	McGovern, etal., “Java Web Services Architecture”, Morgan Kaufmann Publishers, 2005
4	J2EE Web Services, Richard Monson-Haefel, Pearson Education
5	Web Services, G. Alonso, F. Casati and others, Springer, 2005.

WEBSITES

· www.w3schools.com/webservices/
· en.wikipedia.org/wiki/Web_service

· www.tutorialspoint.com/webservices/
· ws.apache.org
· www.w3.org/2002/ws/

24 Quality Measurement Sheets

a. Course End Survey
b. Teaching Evaluation

25. Students List

	

	

26. Group-Wise students list for discussion topics

	
	
	
	
	
	

	

	
	
	

	
	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	
	
	
	
	

	

	

	

	
	
	

	
	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	

	

	

	
	
	
	
	
	

	

	
	
	

	
	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	

image52.jpeg

image53.jpeg

image54.jpeg

image55.jpeg
atnesint prer———
sl 25 o Inormaton sboutthe
T orse ey R
ey || e
<businessService> <tModel>
Descrptive information about a Descriptions of speciicationsfor
oo el g

=
<bindingTemplate>
bindingTemplate- il ity
ronces to
Technical information about a v
Samice enty poin and e hese
<msnicton specation ot
e
Scionata the
iovetace

specications fora

image56.jpeg
<>
S |

<

XML
Document

fampnm

.~

event

event

event

event|

ooooFg

image57.jpeg
amb |
gy input
P —
<fumil>
XML

Document

image58.jpeg
Java Class
- Conplg
2L
| S——
s
£ i
2 2
: f
S e _
<xmb> B,
o (& we
3 N
e
o

Document

image59.jpeg
Sender Receiver
Application Application
XM AP IAXM AP
M M
Messaging Messaging
Provider Provider

image60.jpeg
p

Client

H

3. soap/hitp request

4. soap/hitp response

Application Server

image61.jpeg
Client
Application

8%
8
2E
e
Pluggable
Provider

ebxmL
Provider

22,1 oo

b
RN e

image62.jpeg
Aice commaricates pivae ey toBob

Mesgiun | gt | Eaptanese | Gaped |+ e
ice

Nicetodob [| Mesage ntmnst Vesae
U] @ 6] @ 0]
Aieowts Meenoypts Aicessdsencypted Bobrecsies Bobdeayps
mesage mesaeisig message toBob acpled mesage message
seethey fom Aice sigsecet

ey

image63.jpeg
B ubickey bt Ky
Mesge oL | vy || xypeimesge || pte | | s
Aicetobob || Mesae ntarst Mesage | AicetoBob
m @ 6] [C))
Meeoedss Mceenaps Aesndeoypted Bbreses Bobdeaypls
mesage mesageusng mesiage o Bob acypled mesage messge
Sl ubickey from Alce wsig prvte

image64.jpeg
NewHah

from Ae
toBob
Mesagefom| Encypted mesage
Alice to Bob in transit
m 6]
Nice cetes Alce sends ity
message. sgned message to
b

Orgina Hash|

0]

Bob decypts
hashand
decis t
againstanew
hshofte
receed

mesge

image2.png

image65.jpeg
Key Pair Holder

@ Py D Pubickey

Tossenices
Sener

~Registraton
“Revocaton

recovery

i

Tust senices.

Seer

Locate
Valdate

IS

System

Public Key User

C
5
¢S

&

. O

j

image66.png
PKI
System

GET/ HTTP/1

HTTP/1.1101 OK
X500 Certficate.

Client Trust
Web service service
<dsKeylnfo>
<dsKeyName>
<dsKeyinfo>

<dsKeyvalue>

image67.png
play!

image68.png
€2 GRAILS

image69.png
Sprf;lg

image3.png

image70.png
Struts’

image71.png

image72.emf

image73.jpeg
Code No: 09A80501

R09

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech IV Year II Semester Examinations, April - 2014
WEB SERVICES
(Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

l.a)

b)

o

3.a)
b)

4.a)

6.a)
b)

7.a)
b)

8.a)
b)

Answer any Five Questions
All Questions Carry Equal Marks

What are Web Services? Describe briefly the tools and technologies enabling
Web Services.
Explain the architecture model for JAVA RMI and Microsoft DCOM.

What do you mean by web services? What is web services operational model?
Explain the core Web services standards and technologies for building and
enabling Web services.

Discuss the basic steps of implementing web services.
What is the key programming steps involved for creating a service client in RPC

based communication model using AXIS?
What is SOAP encoding? Give the SOAP representation of primitive data types
and structure data tvpes.

Explain about the SOAP message exchange model.

What is the role of SOAP in developing web services? What are its limitations?
Discuss about developing SOAP Web Services using Java.

Discuss the anatomy of WSDL definition document.
Discuss about SOAP binding defined by the WSDL.

Discuss briefly about the UDDI programming APIs.
What is categorization? Discuss the UDDI supported categorization systems.

Describe the challenges in creating Web Services interoperability.
Give an overview of Microsoft NET framework.

--00000--

image4.png

image5.png

image6.png
§

Application

=)
=

TCe/p

TCP/IP

TCe/P

S

image7.png
Application Application Application

B
mp\ ml,.p / corm

Database
Server

image8.png
| [n P N PR
5 B B
Client Stubs Server Skeletons

CORBA - ORB (Obect Bus)

image9.png
RMI
Stubs

RMI
Skeleton

Java RMI

Remote Ref. Layer

Remote Ref. Layer

JRMP.

image10.png

image11.png
com com server

Client 9 run time runtime [~°~| Component

ReC RPC

Dcom
Pml(xol/
o

image12.png

image13.jpeg
CuEnTS

PRESENTATION
TIER

APPLICATION
TIER

INTEGRATION
TIER

POA

= ,
2
J2EE Server
[P
0 8 conTanen
SQU/JDBC|
et

LEGACY
APPLICATIONS

image14.jpeg

image15.png
XML

Partner

/ Intemet /

e

XML

Seller

image16.jpeg
service
Requestor

Invoke Service

image17.jpeg
BOST /StockQuote HTTR/1.1
Host: wi. acmeretailer.con
Content-Type: text/uml; chars
Content-Length: 1000
SOAPACtion: "getBookPrice
<SORD-ENV: Envelope
Jmins: SOAP-ENV="hEtp: //schenas. ¥l soap. org/soap/envelope/*
JmIns:xsi="http: //w.w3c.0rg/2001 /MLSchena-instance®
JmIns: Xs="httD: /Wil w3c.0Tg/ 2001 /MLSChema™
SOAP-ENV: encodingStyle
It tp: //schemas. Xnlsoap.0rg/soap/encoding/ ">
<SOAD-ENV:Body>
<m:getBooiPrice
JmIns:m="hEtp: / /v v ley. con/ fus.book. pricelist™>
<booknane Xsi:type='xsd:string’>
Developing Java e services</booknane>
</m:getBookPrice>
/SOAD-ENV: Body>
</S0AP-EV: Envelope>

image18.png

image19.png
]

=

55

hadees

Q

o)

gs
M
2l |3
gl &
-] w
« -3

g

2

3]

48

Q

o)

22

image20.png
MESSAGE

Requester

image21.jpeg

image22.jpeg
v
| Web Services

{ ! | Web Services Provider !
1 Requestor I 1
| | 1 | Services Runtime :
! | Service Delivery | | 1| Environment !
| i ! !
Wr—— || Invoke : L I
U[s0m | senices ||| MIWebsenvicesyz [T !
1| Clint o) I
1 | | Preferences | SOAP Interface % |
[e | Classes I !
i i i
i | i
4 XML Descriptors CORBA !
i

WsDL Microsoft .NET !

i

i

L|: I

i

image23.jpeg
Apache s 1.0 BEA Weblogic 70
= L Websices
SO Gl (¢ s []| i
souP H ‘
funtine
P BB
B Wb 1| Contaier
Applcations
T Web
Contaer
Database

image24.jpeg

image25.jpeg
AmeDAD

[cccSesionto>> AceXMtdper AceDAOlmpl [AcmeDataSource
ool PP s encapslates
e
\
Product

image26.jpeg
0ST /Booxprice HITR/1.1
Host: catalog.acneco.com
Content-Type: tex/sml; char
Contenc-Length: 640

SoAPACtion: ‘GetBookpric

<sons-Ev.Bavelope

xmlne:S0A ENV-http: //schenas xmlsoap. org/soap/envelops/ -

Smlns xsL="http: //wws-u3c. org/ 2001 /MLSchena-nstance"

Semlnz xade"REtp: / funne 3e orG /2001 /0 Schemas

‘SoAP-ENV: ancedingstyie
="http://schemas .xmlsoap. ora/soap/encoding/ >

<SOAP-ENV Headar>
<personmatl
ming:pereor
</personimail>
~</50np-V: Headar>

http:/ /acmecs. com/Header *xy=dacmecs. con

<soAp-mw:Body>
[
xmlne:m="http: //uew.wiley. con/ us.book.priceLists>
<bookname xe1:cype'xsd:string'>
Developing Java Web Services</booknane>
</miGatBookPrices
</s0np-mv:Boay>
</SOAP-ENV: Envelope>

image27.jpeg
HITR/1.1 200 OK
Content-Type: text/xal; charset:
Content-Length: 640

gt

<sonp-mwv:Envelope
mlns : SOAP-ENV=http: //schemas. sl soap. org/soap/envelope/

/v 3c..0rg/2001/MLSChema-nstance™

+/ fvaeu.w3c .0xa/2001/XMLSchena

encodingstyle="http: //schemas. xnlsoap. org/soap/encoding/ />
<SOAP-ENV:Header>

mlns rwiley="http: //3ws.wiley.con/2002 /booktx"
SOAP-ENV:mustinderstand="1t> §
</wiley:Transastion>
</S0AP-ENV: Header>
<sonP-m:Body>
<n:GetBookPriceResponse xmins:m="
BEtp: //wwa-wiley. con/Iws.book DriceList s>
<Prices50.00</Price>
</m:GotBookPriceResponse>
</508p-EWV:Body>
</50A2-ENV: Envelope>

image28.jpeg
SOAP 1.1 Message
W/Attachments.

SOAP Envelope

SOAP Envelope
(Primary MIME part)

SOAP Header
Header entry

I

Header entry

Attachment

Attachment

Attachment

Attachment

SOAP Body
Body entry

Body entry

image29.png
<S0AP-BNV:Envelope
mlns: SOAB-ENV=http: //schemas .xalsoap.org/soap/envelope/
3mlns s xe1="http: //weaw. w3c.org/2001/TMLSchena-Lnstance
sonlng: x8d="RECD: //ww w3 .0XG/ 2001 /KALSChema*
soRP-EWV:
encodingstyl:

http: //schenas .xnlsoap. oxg/s0ap/encoding/ " />

<1--S0AP Header slements - ~/>

<1--80AP Body element - -/

</sop-mV Bavelopes

image30.jpeg
<sons-Evieader>
<etley:Transaction
mlas el ey="hetp: / /{ws.wiley. ccm/2002 /booktx”
i ————
“keyvalus> 5 </keyvalue>
</wiley:Transaction
</sone-a:zaders

image31.jpeg
<sone-m :ody>
<miGatmokerice
Xmlns =B cp: //nw.wiley. con/us. book priceList/ >
<bookname xs1:type="xsd:string'>
Devaloping Java Web servicess/booknane>
</micatacorerice>
</50np-miv:Boay>

image32.png
xssschems i

hittp: / /w3 .0rg/2001 /ML chena®
elementzormpetault="qualified>
<xs:elenant. nane="productrype>
<xs:simplerype base="xsd:string™>
cxe:emumeration value—iarduare’s
eration value-Softuare’

image33.jpeg

image34.jpeg

image35.png
soap soap soAP
Sender Intermediary Receiver

image36.png
_ FequestChain

= H = H =

soAP

fary.

]

Response Chain

image37.jpeg
<sonp-z: mvelope
ming: SoAP-EW-*hi.tp. //schenas 1wl scap. org/soap/ envelops/
xmlns:xai="http: / /mar.ulc.org/ 2001 /MMLschena-instance”
"http: / /wew3c.org /2001 /MLSchena®
Sonp- s encodingstyle
http: //achenas .xlsoap.org/scap/encoding/ >
<sonp-av eacer

r—

P —
<sonp-mw:sody>
<m:Getacokrice
mlns = hi£p: //mew.wiley.con/ jus .book.priceList=>
“booknane xsi:type"xsd:string’>
Developing gava Web servicess/beoknane>
</micatmsokerices
</soap-awv.moay>
</s0rz-m: Eavelope>

image38.png
<sonp-Ewv: Envelope
xmlns :SOAP-ENV=http: / /schemas . xmlsoap. org/soap/envelope/

<Price>50.00¢/price

</m:Gatuookericerasponse>
</s0re-mv:Body>
</s0re-m: Envelope>

image39.jpeg
<anv:nvelope xalns senv="

<anv.sesdar>
<n:Inventoryotice xalns:n="http://ivs.uiley.con/Inventory™>
“n:productcotesg687689 6896/ s producteades.
</n: TaventoryNotice>

P ——

<env:zoay>
“<n:product. xmlns:m="http://jvs. wiley.con/produict >
<m:nane>Developing Java Web Services</mname>
< quantity>25000/maquanti ty>
<m:dste>2002-07-01714:00:00-05:00</n:date>
</m:product>

</env-moay>

</env:mavelope>

http: / /ies. 3 05g/2001/12/s03p-anveloper>

image40.png
Client Server

image41.png
SOAP Request Message

S0AP
SOAP Response Message Server

image42.png
SOAP Request Message
SOAP Response Message (5) soap

'SOAP Response Message (s) e

image43.png
soap SOAP Message (5) o
Clent [T] semver

image44.png
SOAP Message
S0AP

SOAP Response Message Server

image45.jpeg
Ta-"myxey -
Carriaareyane - Symmetric Key®
e KayNanarBU1E ALianra REA Heveson:Kuvhiames
“eenciClpherbatas

image46.png
BT i Rt 7 o o3 - xR/ 2000/CR xarl o1 4n

e b e

AT RS A
Retarences

~/one_mew moy-

image47.png
<SOAP-ENV: Eavelope
mlns: SORP-ENV-"http://schenas. xmlsoap. org/seap/ envalops/ ">
<SOAP-ENV: Header>
<SOAP-SEC:Authorization
xmlns : SOAP-SEC="http: //schemas .xmlsoap. org/s0ap/securi ty/"
SOAP-ENV:actor—" actor-URI®
‘SOAP-ENV:mustUnderstand-"1">
<AttributeCert xmins-
"http://schenas. xalsoap.org/soap/security/AttributeCert ">
An encoded certificate inserted here as
encrypted using actor's public key.
</Attrivutecerts

</S0AP-SEC: Authori zation>
</50MP-mNV Header>
<SOAP-ENV: Body>
</S0RP-ENV:Boay>

</S0AP-ENV: Envelopes

image1.jpeg

image48.jpeg
ot seing g i e awser s st

e e e Comgimrs

Dy —
it ottt

)
e v 32
il oy ooy 0.
s e Fovoroe st e 0
e e ot e i i £

image49.jpeg

image50.jpeg

image51.jpeg
Look Up the Web Service

e Sevice Provier

