

- 1 -

Geethanjali College of Engineering and Technology

Cheeryal (V), Keesara (M), Ranga Reddy District – 501 301 (T.S)

DATABASE MANAGEMENT SYSTEMS

LABORATORY MANUAL

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

Lab In Charge HOD-CSE

G.SWAPNA Dr. Nagender Kumar Suryadevara

Asst. Prof. Professor.

- 2 -

Geethanjali College of Engineering and Technology

Department of COMPUTER SCIENCE & ENGINEERING

(Name of the Lab Course) : OPERATING SYSTEMS

 (JNTU CODE): Programme : UG

Branch: CSE A,B, C & D Version No : 2

Year: II Updated on : 3/6/2015

Semester: I No.of pages : 85

Classification status (Unrestricted / Restricted)

Distribution List : Department, Lab, Library, Lab In Charge

Prepared by : Modified by :

1) Name : Madhuri Agarwal Gupta 1) Name : Dr. Nagender Kumar Suryadevara

2) Sign : 2) Sign :

 3) Design : Asst. Prof. 3) Design: Professor

4) Date : 4) Date :

Verified by :

1) Name : Dr. Nagender Kumar
Suryadevara

2) Sign :

3) Design : Professor

4) Date :

* For Q.C Only.

1) Name :

2) Sign :

3) Design :

4) Date :

Approved by : (HOD)

 1) Name :

2) Sign :

3) Date :

- 3 -

List of Lab Exercises

S.No. Name of the programs Page

No.

1 E-R Model: Analyze the problem with the entities which identify data

persisted in the database which contains entities, attributes.

2 Concept design with E-R Model: Apply cardinalities for each

relationship, identify strong entities and weak entities for relationships

like generalization, aggregation, specialization.

3 Relation Model: Represent attributes as columns in tables and

different types of attributes like Composite, Multi-valued, and Derived.

4 Normalization

5 Installation of MySql and practicing DDL commands.

6 Practicing DML commands

SELECT, INSERT, UPDATE, DELETE.

7 Querying

Queries using ANY, ALL, IN, INTERSECT, UNION

8 Querying

Using aggregate functions COUNT, SUM using GROUPBY and

HAVING.

9 Querying

Using aggregate functions AVERAGE using GROUPBY and

HAVING

10 Procedures

Creation, Execution and Modification of stored Procedure

11 Cursors

A cursor on the given data

- 4 -

ADDITIONAL PROGRAMS

S.No. Name of the Programs

Page

no

1 Design and implement queries on EMP, dept, salgrade tables. 66

2 Design and implement queries on sailors, boats and reservation. 71

3 Design and implement queries on EMP, dept, salgrade tables. 71

- 5 -

Vision of the Department

To produce globally competent and socially responsible computer science engineers

contributing to the advancement of engineering and technology which involves creativity and

innovation by providing excellent learning environment with world class facilities.

 Mission of the Department

1. To be a center of excellence in instruction, innovation in research and scholarship, and service to

the stake holders, the profession, and the public.

2. To prepare graduates to enter a rapidly changing field as a competent computer science engineer.

3. To prepare graduate capable in all phases of software development, possess a firm understanding of

hardware technologies, have the strong mathematical background necessary for scientific

computing, and be sufficiently well versed in general theory to allow growth within the discipline

as it advances.

4. To prepare graduates to assume leadership roles by possessing good communication skills, the

ability to work effectively as team members, and an appreciation for their social and ethical

responsibility in a global setting.

 PEOs and POs

PROGRAM EDUCATIONAL OBJECTIVES

1. To provide graduates with a good foundation in mathematics, sciences and engineering

fundamentals required to solve engineering problems that will facilitate them to find employment

in industry and / or to pursue postgraduate studies with an appreciation for lifelong learning.

2. To provide graduates with analytical and problem solving skills to design algorithms, other

hardware / software systems, and inculcate professional ethics, inter-personal skills to work in a

multi-cultural team.

3. To facilitate graduates to get familiarized with the art software / hardware tools, imbibing

creativity and innovation that would enable them to develop cutting-edge technologies of multi-

disciplinary nature for societal development.

- 6 -

PROGRAM OUTCOMES

1. An ability to apply knowledge of mathematics, science and engineering to develop and

analyze computing systems.

2. an ability to analyze a problem and identify and define the computing requirements

appropriate for its solution under given constraints.

3. An ability to perform experiments to analyze and interpret data for different applications.

4. An ability to design, implement and evaluate computer-based systems, processes,

components or programs to meet desired needs within realistic constraints of time and space.

5. An ability to use current techniques, skills and modern engineering tools necessary to

practice as a CSE professional.

6. An ability to recognize the importance of professional, ethical, legal, security and social

issues and addressing these issues as a professional.

7. An ability to analyze the local and global impact of systems /processes /applications

/technologies on individuals, organizations, society and environment.

8. An ability to function in multidisciplinary teams.

9. An ability to communicate effectively with a range of audiences.

10. Demonstrate knowledge and understanding of the engineering, management and economic

principles and apply them to manage projects as a member and leader in a team.

11. A recognition of the need for and an ability to engage in life-long learning and continuing

professional development

12. Knowledge of contemporary issues.

13. An ability to apply design and development principles in producing software systems of

varying complexity using various project management tools.

14. An ability to identify, formulate and solve innovative engineering problems.

Mapping of Lab Course with Programme Educational Objectives

S.No Course

component

code course Semester PEO 1 PEO 2 PEO 3

1
Professional

core
 DBMS II √ √

- 7 -

Mapping of Lab Course outcomes with Programme outcomes:

Pos 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
ro

fe
ss

io
n
al

 c
o
re

DBMS Exp no.

CO1: Student

gains the

ability to

Construct E-R

diagrams.

1 H H L H H L

CO 2: Student

gains the

ability to

describe the

data

requirements

for a new

information

system in a

direct and easy

to understand

graphical

notation.

2,3 H H L H H L

CO 3: Student

gains the

ability to

implement

Notation to

Describe the

Relational

Schema and to

Represent an

ER Model as a

Relational

Model.

2,3 H H L H H L

CO 4: Students

are able to

build the

database that

does not have

redundant data.

4 L L H L L

CO 5: Students

have the ability

to Categorize

the main

5,6,7,8 L H H H L H

- 8 -

database

objects,

Review and

create the table

structure with

constraints.

CO 6: Students

are able to

perform

transactions

like updating,

deleting,

inserting and

selecting data

from a data

base.

6,7,8 H H H L H

CO 7: Student

are able to

implement

queries using

ANY, ALL,

IN,

INTERSECT,

UNION and

aggregate

operators.

6,7,8,9 L L H H L H

CO 8: Students

have the ability

to change

database

manager from

a passive

system to an

active one.

10 L L H H

CO 9: Students

are able to

implement

procedures ,

cursors and

triggers.

10,11,12 L L H H

- 9 -

DBMS

Lab Manual

- 10 -

INTRODUCTION

What is Oracle?

Oracle is the name of the database management system that comes from Oracle

Corporation.

Oracle9i is the latest product released by Oracle Corporation. Unlike Oracle8i, which is

only a database management system, Oracle9i is a collection of following software:

 Oracle9i Application Server – Oracle9iAS

 Oracle9i Database Server – Oracle9iDB

 Oracle9i Developer Suite – Oracle9iDS

In simple words Oracle9i is a platform and not a simple database management system.

Oracle9iDB is the database management system that is used to store and access data.

Oracle is by far the most widely used relational database management system (RDBMS).

Oracle Corporation is second largest software company next to Microsoft. Oracle

Corporation has been targeting Internet programming with the caption - software powers

the internet.

This book is about Oracle Database Server. It doesn’t discuss about other products in

Oracle9i.

Oracle Corporation is also into Enterprise Resource Planning (ERP). It has Oracle

Applications that includes Oracle Financials etc.

Oracle Database Server

Oracle database server is one of the databases that are widely used in client/server

computing as back-end. Front-end programs that are written using application

development tools such as Visual basic access Oracle and submit SQL commands for

execution. Oracle8i onwards oracle is trying to provide extra facilities that are required to

be an internet database.

- 11 -

 Figure 1: Oracle Server as Server in Client/Server computing model.

Oracle8i provides special features to support various types of data that is to be stored in

web sites. Oracle supports both OLTP (online transaction processing) applications as well

data warehouse applications, which contain a very large database (VLDB).

One of the biggest advantages of Oracle has been its presence on around 100 different
platforms. Oracle is quite scalable, which means it can scale up and down very easily as
the requirements change.

Oracle also provides Java Virtual Machine (JVM) as part of database. This enables oracle
to run java programs. In fact, starting from Oracle8i, oracle can run programs written
either in PL/SQL or Java.

Oracle Instance
Oracle instance is a collection of memory structures and processed that are used to

manage oracle database. Each oracle database is to be accessed by one or more Oracle

instances. If two or more instances are accessing the same database, it is called as parallel

server architecture. In order to start using an oracle database, we must first start Oracle

instance. Oracle instance will them open the database and make it available to users. It is

beyond the scope of this book to discuss what Oracle instance actually contains. Please

read “Oracle Concepts” manual for complete information about oracle instance. In

nutshell every oracle installation contains at least one Oracle Instance and one oracle

database.

- 12 -

Primary Memory (RAM)

Oracle Instance

Oracle Database

Hard disk

Figure 2: Oracle Instance and Oracle Database.

What Is Personal Oracle?
Personal Oracle is one of the flavors of Oracle. This is not a product that is used by

production system (systems where real data is stored). This is more like a learning tool. It

runs on desktop PCs. In personal oracle, oracle instance, oracle database and client

application all run on the same machine (see figure 3). Whereas in Oracle database

server, only oracle instance and database reside on the server and client applications run

on clients.

Client

Oracle Instance

Oracle Database

Figure 3: Personal Oracle.

It is also possible to develop an applications using Personal Oracle on you
desktop/laptop and deploy them in a client/server environment.

- 13 -

Starting up Database
Before we access oracle database, we must start oracle database. Starting up oracle

database means starting oracle instance and associating oracle instance with an oracle

database so that oracle instance can access the database. The process is very length and

complicated. Several steps are involved in it. But fortunately we do not have to know all

that happens when a database starts. We just need to select an option or two to startup

database. Generally you do not have to startup database in case of Oracle Server running

on Windows NT/Windows 2000 as oracle server automatically starts in this case.

However, if you ever have to start oracle database on Windows NT/Windows 2000,

follow the steps given below:

1. Start services program using Administrative Tools -> Service in Windows/2000

or Control Panel -> Service on Windows NT.

2. If service OracleServiceOracle8i has not yet started, click on it with right button

and select start option from popup menu.

The exact name of the service depends on the name you have given to oracle
instance at the time of installing it.

Note: Starting and shutting down the database is the job of Database Administrator. As
this books assumes that you are an application developer, it doesn’t get into those details.

Starting up database in Personal Oracle

Unlike Oracle Server in Personal Oracle, Oracle Instance doesn’t start on its own. The
Oracle Instance must be explicitly started. The following are the steps to start oracle on
Personal Oracle:

1. Select start database option in Personal Oracle8i for windows menu.

2. When a dialog box is displayed wait until the message Oracle Instance Started

appears.

3. Click on Close button to close the dialog box.

- 14 -

Starting SQL*PLUS

Sql*plus is a tool that comes along with Oracle. It is used to issue SQL and SQL*PLUS
commands. It provides command line interface through which we can enter SQL and
SQL*PLUS command.

To start SQL*PLUS, take the steps given below:

1. Select start->programs->Oracle - Oracle8i.

Oracle8i is the name of the instance. It may be different on your system.

2. Then select Application Development -> SQL Plus.

3. When Log On dialog box is displayed, enter username, password and Host string. Use

tab key to move from one field to another. For more information about each of these

fields, see next section.

4. Click on OK.

5. If the information supplied is valid then you enter into Oracle and SQL*PLUS

will display SQL> prompt.

Username, Password and Host String
Oracle is a multi-user database. Whoever is access the database must log on to database?

To log on we have to supply username and password. When the given username and

password are recognized by Oracle, it will allow us to access data. A user can access

only the data that belongs to his/her and not the data of others. However, it is possible for

a user to grant privileges to others so that other can access his/her data. Creation of users

and management of overall security is the responsibility of Database Administrator

(DBA). DBA is the person who makes sure that database is functioning smoothly. He is

responsible for operations such as taking backup of the database, recovering the database

in the event of failure, fine tuning database to get best performance. So, if you want to

have a new account under your name, please consult administrator of your database.

Username & Password
Every user who wants to access oracle database must have an account in the database.
These accounts are created by DBA. Each account is associated with username and
password.
Oracle comes with a set of predefined accounts. The following are the usernames
and passwords of these accounts.

Username Password
system manager

- 15 -

sys change_on_install
Scott tiger
Demo demo

Note: when you enter into oracle using either system or sys then you become
DBA. That means you get special privileges to perform major operations such as
creating users etc.

Host String
Host string is a name that is used to access oracle server that is running on a different

machine from client. This is required only when you are trying to access oracle server

that is not on the current machine. That means, you never need to use host string for

Personal Oracle as client and oracle always run on the same machine in Personal Oracle.
Host string is required when you are trying to connect to Oracle Server running on
remote machine. Host string is actually called as net service name. Net service name is
a name that is stored in TNSNAMES.ORA file on the client to provide the following
information.

Host Name of the machine or IP address of the machine on

Which oracle server is running?
Instance Name of the Oracle Instance running on the remote

machine.
Port Number Port number of the listener, a program that takes

Requests from clients. Port number is an integer that
Uniquely identifies the program on the server.

How to enter SQL statements?
SQL*PLUS allow to types of command to entered at the prompt - SQL and
SQL*PLUS.
SQL commands include commands of ANSI/ISO SQL and extra commands added to
ANSI SQL by oracle.
The following are the rules to be followed while entering SQL commands.

1. An SQL statement may be entered in multiple lines.

2. It is not possible to break a word across lines.

3. SQL statement must be terminated by semicolon (;).

The following is an example of SQL command. What this command does is not
important at this moment.

- 16 -

SQL> select ccode, name
2 from courses

3 where fee > 5000;

In the above command, we entered the command in three lines. When you enter
semicolon and press enter key then SQL*PLUS will take it as the end of the command.
Also note that you have to press enter key at the end of each line.

Note: Both SQL and SQL*PLUS commands are NOT case sensitive.

How to enter SQL*PLUS statements?
SQL*Plus statements are available only in SQL*PLUS. They are not part of standard
SQL. SQL*Plus commands are mainly used for two purposes – editing SQL commands
and formatting result of query.

The following rules are to be followed while entering these commands.

1. The entire command must be entered on a single line.

2. No need to terminate command with semicolon (;).

3. Commands can be abbreviated. However, the amount of abbreviation is not fixed.

Some commands are abbreviated to one letter some are abbreviated to 2 and so on.

The following example show how to use CLEAR SCREEN command of
SQL*PLUS.

SQL>clear screen

Or it can be abbreviated to

SQL>clrscr

Common Errors
The following are the common errors that you get while you are trying to log on to
Oracle.

Ora-01017: invalid username/password; login denied

- 17 -

WEEK 1

AIM

E-R Model

Analyze the problem with the entities which identify data persisted in the database which

contains entities and attributes.

Objectives:

Student will able to learn the Entity-Relationship(ER) modeling to develop a conceptual model of data.

Outcomes:

 Student gains the ability

 About business rules, notations and constructs.

 To Construct E-R diagrams including:

 Entities (strong, weak, associative)

 Attributes (simple, multi-valued, derived)

 Relations (unary, binary, ternary)

Roadway Travels System

Requirements Analysis

Roadway Travels:

Roadway travels is in business since 1997 with several buses connecting different places in india. Its

main office is located in Hyderabad. The company wants to computerize its operations in the following

areas.

The company wants to computerize its operations in the following areas:

1. Reservations and Ticketing

2. Cancellations

Reservations & Cancellation:

Reservations are directly handled by booking office. Reservations can be made 30 days in
advance and tickets issued to passenger. One passenger/ person can book many tickets (to his/her
family).Cancellations are also directly handed at the booking office.

In the process of Computerization of Roadway Travels you have to design and develop a
Database which consists the data of Buses, Passengers, Tickets and Reservation and cancellation
details. You should also develop query‘s using SQL to retrieve the data from the database.

- 18 -

Following steps are involved in the process:

 1. Analyzing the problem and identifying the Entities and Relationships

2. E-R Model

3. Normalised Relational Model

4. Creating the database

 5. Querying.

6. Triggers and Stored procedures on the tables.

1) E-R Model:

Analyze the problem carefully and come up with the entities in it. Identify what data has to be persisted

in the database. This contains the entities, attributes etc. In this we wqill analyze different types of

entities with attributes of “Roadways Travels”.

Entity: An Entity is an object or concept about which you want to store information

Relationship: A relationship is an association between several entities.

Attributes: An object is characterized by its properties or attributes. In relational database systems

attributes correspond to fields.

The Road Way Travels Consists Of The Following Entities:
 BUS

 Ticket

 Passenger

 Reservation

 Cancellation/modification

These Entities have following attributes

Bus:

 Bus_id

 Bus_name

 Bus_type

 Bus_totalseats

Ticket:

 Ticket_booking

 Ticket_datejourney

 Ticket_to

 Ticket_from

 Ticket_id

 Ticket_no of tickets

Passenger:

 Pid

 Pname

 Pgender

- 19 -

 Page

 precancel

VIVA QUESTIONS

1. Explain entity, relation and attributes?

2. What is the difference between weak entity and strong entity?

3. What are the different types of attributes?

4. Explain difference between multi valued and single valued attributes?

5. What is the difference between entity and entity set?

- 20 -

WEEK 2

Concept design with E-R Model and apply cardinalities for each relationship.

Identify strong entities and weak entities for relationships like generalization,

aggregation, specialization.

Objectives:

Student will able to learn data structures in terms of entity types, relationship types and attributes or

classes, associations and attributes.

Outcomes:

Student gains the ability to describe the data requirements for a new information system in a direct and

easy to understand graphical notation.

E_R diagram:

 Bus No

 Source

 BUS

 Destination

Departure Time

Date of journey Reservation

 Sex

 Ticket no Ticket Source

 Departure time Age

- 21 -

VIVA QUESTIONS

1. Draw an E-R Diagram For an ATM System.

2. Draw an E-R Diagram For school mgmt system.

3. Draw an E-R Diagram For Roadways Travels Systems.

4. Draw an E-R Diagram For Bank Mgmt System.

5. Explain many to many and many to one relationship.

- 22 -

WEEK 3

AIM

Relation Model represents attributes as columns in tables and different types of

attributes like composite, Multi-valued and Derived.

Objectives:

Student will able to learn the structural components of the relational data model.

Student will able to learn to map ER models into relational models.

Outcomes:

Student gains the ability

 To describe the Model Structure.

 To define Properties of Relations.

 To define Domains.

 To implement Notation to Describe the Relational Schema

 To Represent an ER Model as a Relational Model.

Example: The passenger tables look as below. This is an example. You can add more attributes based
on your E-R model. This is not a normalized table. Passenger

Bus

#bus_no

source

destination

passenger

#ppno

name

age

sex

address

phone-no

Passenger-
Tickets

#ppno

#ticket_no

#jrny_date

- 23 -

Tickets

#tickets_no

no of tkts

From_place

T0_place

#Bus_no

#jrny_date

 Name Age Sex Address Passport

 ID

Note: The student is required to submit a document by Represent relationships in a tabular fashion to
the lab teacher.

 2. Concept design with E-R model

Relate the entities appropriate for each relationship. Identify strong entities and week entities (if any).

Indicate the type of relationships (total/partial). In this we will design the different E-R diagram for

different entities and also the whole “Roadway Travels”.

E-R diagram: An entity-relationship(ER) diagram is a specified graphic that illustrates the

interrelationships between entities and database. W e can express the overall logical structure of

database graphically with an E-R diagram.

3. Relational Model and Normalization

Represent all the entities (Strong, Weak) in tabular fashion. Represent relationships in a tabular fashion.

There are different ways of representing relationships as tables based on the cardinality. Represent

attributes as columns in tables or as tables based on the requirement. In this we will represent the

different entities, attributes of different keys in a tabular fashion or manner.

- 24 -

Relational Model:

The relational model is a depiction of how each piece of stored information relates to the other stored

information. It shows how tables are linked, what type of the links are between tables, what keys are

used, what information is referenced between tables. It’s an essential part of developing a normalized

database structure to prevent repeat and redundant data storage.

Different types of keys:

 A super key is a set of one or more attributes which; taken collectively, allow us to identify

uniquely an entity in the entity set.

 A primary key is a candidate key(there may be more than one) chosen by the DB designer to

identify entities in an entity set.

 A super key may contain extraneous attributes, and we are often interested in the smallest super

key. A super key for which no subset is a super key is called a candidate key.

 An entity does not posses sufficient attributes to form a primary ket is called a weak entity set.

One that does have a primary key is called a strong entity set.

 A foreign key is a field in a relational table that matches the primary key column of another

table. The foreign key can be used to cross-reference tables.

Normalization

Database normalization is a technique for designing relational database tables to minimize duplication
of information and, in so doing, to safeguard the database against certain types of logical or structural
problems, namely data anomalies. In this we will write the normalization tables that is entities of
“Roadway Travels.”

Normalization: In relational databases, normalization is a process that eliminates redundancy,
organizes data efficiently; Normalization is the process of efficiently organizing data in a database.
There are two goals of the normalization process: eliminating redundant data(for example, storing the
same data in more than one table) and ensuring data dependencies make sense(only storing related data
in a tablet). Both of these are worthy goals as they reduce the amt of space a database consumes and
ensure that data is logically stores.

The Normal Form: the database community has developed a series of guidelines for ensuring that
databases are normalized. These are referred to as normal forms and are numbered from one (the lowest
form to normalization, referred to as first form or INF) through five(fifth normal form of SNF). In
practical applications, you’ll often see INF, 2NF, and 3NF along with occasional 4NF. Fifth normal
form is very rarely seen and won’t be discussed in this article. It’s important to point out that they are
guidelines and guidelines only. Occasionally, it becomes necessary to stray from them to meet practical
business requirements. However, when variations take place, it’s extremely important to evaluate any
possible requirements they could have on your system and account for possible inconsistencies. That
said, let’s explore the normal form.

- 25 -

VIVA QUESTIONS

1. What is relational model and its importance.

2. Explain the difference between candidate key and primary key.

3. What is a super key.

4. Differentiate among all types of keys with example.

5. Explain the need of foreign key.

- 26 -

WEEK 4

AIM

Normalization of tables

Objectives:

Student will able to learn to avoid problems that are associated with updating redundant data.

Outcomes:

Student gains the knowledge to build The database that does not have redundant data.

A basic objective of the first normal form defined by Edgar Frank "Ted" Codd in 1970 was to permit

data to be queried and manipulated using a "universal data sub-language" grounded in first-order

logic.(SQL is an example of such a data sub-language, albeit one that Codd regarded as seriously

flawed.)

The objectives of normalization beyond 1NF (First Normal Form) were stated as follows by Codd:

1. To free the collection of relations from undesirable insertion, update and deletion

dependencies;

2. To reduce the need for restructuring the collection of relations, as new types of data are

introduced, and thus increase the life span of application programs;

3. To make the relational model more informative to users;

4. To make the collection of relations neutral to the query statistics, where these statistics

are liable to change as time goes by.

Querying and manipulating the data within a data structure which is not normalized, such as the

following non-1NF representation of customers' credit card transactions, involves more complexity than

is really necessary:

Customer Transactions

Jones

Tr. ID Date Amount

12890 14-Oct-2003 −87

12904 15-Oct-2003 −50

Wilkinson

r. ID Date Amount

12898 14-Oct-2003 −21

Stevens

Tr. ID Date Amount

12907 15-Oct-2003 −18

14920 20-Nov-2003 −70

15003 27-Nov-2003 −60

http://en.wikipedia.org/wiki/First_normal_form
http://en.wikipedia.org/wiki/First-order_logic
http://en.wikipedia.org/wiki/First-order_logic
http://en.wikipedia.org/wiki/SQL

- 27 -

To each customer corresponds a repeating group of transactions. The automated evaluation of any query

relating to customers' transactions therefore would broadly involve two stages:

1. Unpacking one or more customers' groups of transactions allowing the individual transactions in

a group to be examined, and

2. Deriving a query result based on the results of the first stage

For example, in order to find out the monetary sum of all transactions that occurred in October 2003 for

all customers, the system would have to know that it must first unpack the Transactions group of each

customer, then sum the Amounts of all transactions thus obtained where the Date of the transaction falls

in October 2003.

One of Codd's important insights was that this structural complexity could always be removed

completely, leading to much greater power and flexibility in the way queries could be formulated (by

users and applications) and evaluated (by the DBMS). The normalized equivalent of the structure above

would look like this:

Customer Tr. ID Date Amount

Jones 12890 14-Oct-2003 −87

Jones 12904 15-Oct-2003 −50

Wilkins 12898 14-Oct-2003 −21

Stevens 12907 15-Oct-2003 −18

Stevens 14920 20-Nov-2003 −70

Stevens 15003 27-Nov-2003 −60

Now each row represents an individual credit card transaction, and the DBMS can obtain the answer of

interest, simply by finding all rows with a Date falling in October, and summing their Amounts. The

data structure places all of the values on an equal footing, exposing each to the DBMS directly, so each

can potentially participate directly in queries; whereas in the previous situation some values were

embedded in lower-level structures that had to be handled specially. Accordingly, the normalized design

lends itself to general-purpose query processing, whereas the unnormalized design does not.

VIVA QUESTIONS

1. Explain the need of normalization?

2. What is functional dependency?

3. Explain difference between third normal form and boyce codd normal form?

4. What is PJNF?

5. What is transitivity dependency?

http://en.wikipedia.org/wiki/User_(computing)
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Database_management_system

- 28 -

WEEK 5

AIM

INSTALLATION OF MYSQL and Practicing DDL commands

Objectives:

Student will able to learn DDL Statements to Create and Manage Tables.

Outcomes:

Student gains the ability to

• Categorize the main database objects

• Review the table structure

• List the data types that are available for columns

• Create a simple table

• Describe how constraints are created at the time of table creation

• Describe how schema objects work.

Requirements:

MYSQL, software for database that is “MYSQL.exe” required space for installing MYSQL server.

Description: In this we will install the MYSQL server and also practice the “DDL” commands.

Installation of MySQL and Practicing DDL commands:

Installation of MySQL:

Why MySQl:MySQL is undoubtedly the most popular and widely-used open source database:

 It is simple to setup and use.

 It is recognised as one of the fastest databse engines.

 Most linux(and many Windows-based)web hosts offer MySQL.

 MySQL is closely integrated with PHP, which makes it an ideal cndidate for many web

applications.

Why Install MySQL Locally?

Installing MySQL on your development PC allows you to safely create and test a web application

without affecting the data or systems on your live website.

- 29 -

Installing MySQL on Windows: In this section you will learn how to install MySQL 5.0 on windows

system the MySQl 3.21 was first version for the windows. Windows installer of MySQL includes auto

installer with configuration Wizard that support for easy installation.

PRACTICING DDL COMMANDS:

Creating a table:

 To store data into the database we must create a table with same structure as the data we have to

store into the database. To create a table use the create table Command that has the following syntax.

Syntax: SQL>Create table <tablE name> (<colname>< datatype>[constraints],<colname>

[constraints]……. colname>< datatype>[constraints],[table level constraints])

student table:

Sid int pK

Sname Varchar(30) Notnull

Course Varchar(30) default ‘cpp’

Query for creating Student Table:

Create table student (Sid int constraint sid_PK Primary Key, Sname varchar(30) not null. Course

varchar(30) constraint default-course default’CPP’)

Altering Table structure:

After creating table we may want to add or remove columns and constraints or change the data type of a

column to perform all these operations, we have to use alter table that has the following syntax,

1. Alter column: this option is used to change the datatype of a column or add or remove not null

constraint.

Syntax: Alter Tabl<tablEname>AlterColumn<colname><datatype>Null/NotNull

Q: Sp_help’student’ //Execute

EX: The following example changes the data types of sname column of student table to char with

maximum length 40 removes the not Null Column constraint available on it.

Q: Alter Table Student Alter Column Sname Char (40) Null

Q: sp_help’student //Execute

3. Drop Column: this option is used to delete columns from the table

Syntax: Alter Table<tablEName>Drop Column<Column List>

- 30 -

Ex: The following example deletes the columns Fname and address from the table student.

Q: Alter table Drop Column Fname, Address.

VIVA QUESTIONS

1. Write the syntax for all DDL commands?

2. What is the difference between drop and truncate command?

3. What is DDL interpreter?

4. What is the command to delete columns from table?

- 31 -

WEEK 6

AIM

Practicing DML commands

Objectives:

Student will able to learn commands that make changes in relational database and transaction

management.

Outcomes:

Student gains the knowledge to perform transactions like updating, deleting, inserting and selecting data

from a data base.

SELECT INSERT,UPDATE,DELETE.

5. Data Manipulation Language commands

 1) Inserting rows into the table: To insert rows into the table we have to use insert Command that

has the following syntax

Syntax: insert [into] <tablename>values ([values>)

While using thei syntax of insert command we must provide value for every column. Whenever we

want to insert null into a column then use the keyword null and to insert default value for a column use

the keyword default.

Ex:The following examples insert rows into the table student

Insert student Values (1001,’A’,’Dotnet’)

Insert student Values (1002,’B’,’Defaultt)

Insert student Values (1003,’C’,’SQL’)

Select * from student //Execute this line

Ex:The following examples insert rows into the table marks

Insert Marks Values (1001, 77, 54, 67, null, null, null)

- 32 -

Insert Marks Values (1002, 70, 45, 56, null, null, null)

Insert Marks Values (1005, 78, 65, 89, null, null, null)

Select * from marks //select this line and execute

2) Creating a table from another table: When we have to create a new table from existing table then

use the following Syntax of Select statement.

Syntax: Select*|<column list>into<new table name>from <old table name>[where<condition>]

Ex: the following example creates a table with name student3 from the table student.

Q: Select * into student3 from student //Execute

3) Updating Rows in the table: When we have to modify the existing data in the table then we have to

use update Command that has the following syntax

Syntax: Update <tablEname> Set<column>=<value>,<colname>=<value>…[Where<condition>]

Ex:The following examples updates name and course of the student with id 1004 to S and DOTNET

Q: Update student set name-‘S’, course=’’DOTNET’ where sid=1004

Q: Select * from student

EX: The following example updates marks table by calculating total and average for all rows.

Q: update marks set total=C+CPP+SQL,aveg=(C+CPP+SQL)/3.0

Q: Select * from marks

Ex:the following example updates marks table by calculating the grade on average marks.

Q: Update marks set grade=

Case

When Aveg>=70 then ‘distinction’

When Aveg>=60 and Aveg<70 then ‘first class’

When Aveg>=50 and Aveg<60 then’Second class’

When Aveg>=35 And Aveg<50 then’third class’

- 33 -

Else’Fail’

End

4) Deleting Rows from the table:To delete rows from table use the delete Command that has the

following syntax:

Syntax: Delete Rows from Table Delete[from]<tblEname>[where<condition>]

Ex: The following example deletes the student record with si4-1004 from marks table

Q: Delete marks where sid=1004

Q: Select * from marks

EX: The following example deletes all rows from the marks.

Q: Delete marks

Output

4. Create the table using following attributes BUS (BUSNO: VARCHAR2 (10): PK,

SOURCE: VARCHAR2 (50), DESTINATION: VARCHAR2 (50))

Creating table

Syntax

Create table <table name> (col1 datatype,col2 datatype,col3 datatype)

Query

Create table create table BUS (BUSNO VARCHAR2(10) Primary Key, SOURCE

VARCHAR2 (50), DESTINATION VARCHAR2 (50));

Describing table

Query

Desc bus

RATING MINAGE

8 25.5

7 35

3 25.5

- 34 -

Output

Table Column Data Type Length Precision Scale Primary Key Nullable Default Comment

BUS BUSNO Varchar2 10 - - 1 - - -

 SOURCE Varchar2 50 - - -

- -

 DESTINATION Varchar2 50 - - -

- -

1 - 3

Inserting records into “Bus” table

Syntax

Insert into <table name> values (val 1,val2,val3)

Query

insert into bus values(1234,'hyderabad',’tirupathi’);

insert into bus values(2345,'hyderabad',’tirupathi’);

insert into bus values(23,'hyderabad',’kolkata’);

insert into bus values(45,' tirupathi ',’banglore’);

insert into bus values(34,'hyderabad',’chennai’);

Display table

Syntax

Select <select list> from <table name>

Query

Select * from bus;

Output

BUSNO SOURCE DESTINATION

1234 hyderabad tirupathi

2345 hyderabad tirupathi

23 hyderabad kolkata

javascript:ret_Column('TIRU.BUS');
javascript:ret_Column('BUSNO');
javascript:ret_Column('SOURCE');
javascript:ret_Column('DESTINATION');

- 35 -

45 tirupathi banglore

34 hyderabad chennai

5. Create the table using following attributes PASSENGER (PPNO: VARCHAR2 (15):

PK, NAME: VARCHAR2 (15), AGE: INT (4), SEX: CHAR (10): MALE/FEMALE,

ADDRESS: VARCHAR2 (50))

 Creating table

Syntax

Create table <table name> (col1 datatype,col2 datatype,col3 datatype)

Query

CREATE TABLE PASSENGER (PPNO VARCHAR2 (15) PRIMARY KEY, NAME

VARCHAR2 (15), AGE NUMBER (4), SEX CHAR (10), ADDRESS VARCHAR2

(50));

Describing table

Query

Desc PASSENGER

Output

Table Column Data Type Length Precision Scale Primary Key Nullable Default Comment

PASSENGER PPNO Varchar2 15 - - 1 - - -

 NAME Varchar2 15 - - -

- -

 AGE Number - 4 0 -

- -

 SEX Char 10 - - -

- -

 ADDRESS Varchar2 50 - - -

- -

1 - 5

Inserting records into “PASSENGER” table

Syntax

javascript:ret_Column('TIRU.PASSENGER');
javascript:ret_Column('PPNO');
javascript:ret_Column('NAME');
javascript:ret_Column('AGE');
javascript:ret_Column('SEX');
javascript:ret_Column('ADDRESS');

- 36 -

Insert into <table name> values (val 1,val2,val3)

Query

insert into PASSENGER values(1,'TIRUMALAY',19,'MALE','AMBERPET');

insert into PASSENGER values(2,'SUPRIYA',20,'FEMALE','B.B NAGAR');

insert into PASSENGER values(3,'AMULYA',20,'FEMALE','ECIL');

insert into PASSENGER values(4,'NAGARAJU',20,'MALE','NAGARAM');

insert into PASSENGER values(5,'AVS.RAVI',20,'MALE','B.B NAGAR');

Display table

Syntax

Select <select list> from <table name>

Query

Select * from PASSENGER;

Output

PPNO NAME AGE SEX ADDRESS

1 TIRUMALAY 19 MALE AMBERPET

2 SUPRIYA 20 FEMALE B.B NAGAR

3 AMULYA 20 FEMALE ECIL

4 NAGARAJU 20 MALE NAGARAM

5 AVS.RAVI 20 MALE B.B NAGAR

VIVA QUESTIONS

1. What is the syntax for insert command?

2. Define Key constraint?

3. What is the difference between NULL Values and NOT NULL Values?

4. What is the command to display table?

- 37 -

WEEK 7

AIM

QUERYING

QUERIES USING ANY, ALL, IN, INTERSECT, UNION

Objectives:

Student will able to learn to operate on multiple result sets to return a single result set.

Student will able to learn to perform nested Queries.

Outcomes:

Student gains the knowledge to implement queries using ANY, ALL, IN, INTERSECT, UNION.

6. Create the table using following attributes TICKET (TICKET_NO: NUMERIC (9):

PK, JOURNEY_DATE: DATE, AGE: INT (4), SEX: CHAR (10): MALE/FEMALE,

SOURCE: VARCHAR2 (50), DEP_TIME: VARCHAR2 (50))

 Creating table

Syntax

Create table <table name> (col1 datatype,col2 datatype,col3 datatype)

Query

CREATE TABLE TICKET (TICKET_NO NUMBER (9) PRIMARY KEY ,

JOURNEY_DATE DATE, AGE NUMBER (4), SEX CHAR (10), SOURCE

VARCHAR2 (50), DEP_TIME VARCHAR2 (50))

Describing table

Query

Desc TICKET

- 38 -

Output

 Inserting records into “TICKET” table

Syntax

Insert into <table name> values (val 1,val2,val3)

Query

insert into TICKET values(1203,'10/FEB/11',19,'MALE','HYDERABAD','10.30 AM');

insert into TICKET values(1213,'10/FEB/11',19,'FEMALE','HYDERABAD','10.30

AM');

insert into TICKET values(1201,'13/FEB/11',20,'FEMALE','HYDERABAD','11.30

AM');

insert into TICKET values(1202,'14/FEB/11',20,'MALE','TIRUPATHI','11.00 AM');

insert into TICKET values(1205,'14/FEB/11',20,'MALE','HYDERABAD','11.00 AM');

Display table

Syntax

Select <select list> from <table name>

Query

Table Column Data Type Length Precision Scale Primary Key Nullable Default Comment

TICKET TICKET_NO Number - 9 0 1 - - -

 JOURNEY_DATE Date 7 - - -

- -

 AGE Number - 4 0 -

- -

 SEX Char 10 - - -

- -

 SOURCE Varchar2 50 - - -

- -

 DEP_TIME Varchar2 50 - - -

- -

javascript:ret_Column('TIRU.TICKET');
javascript:ret_Column('TICKET_NO');
javascript:ret_Column('JOURNEY_DATE');
javascript:ret_Column('AGE');
javascript:ret_Column('SEX');
javascript:ret_Column('SOURCE');
javascript:ret_Column('DEP_TIME');

- 39 -

select * from TICKET;

Output

TICKET_NO JOURNEY_DATE AGE SEX SOURCE DEP_TIME

1203 10-FEB-11 19 MALE HYDERABAD 10.30 AM

1213 10-FEB-11 19 FEMALE HYDERABAD 10.30 AM

1201 13-FEB-11 20 FEMALE HYDERABAD 11.30 AM

1202 14-FEB-11 20 MALE TIRUPATHI 11.00 AM

1205 14-FEB-11 20 MALE HYDERABAD 11.00 AM

7.Create the table using following attributes PASSENGER_TICKETS (PPNO:

VARCHAR2 (15): PK, TICKET_NO: NUMERIC (9))

 Creating table

Syntax

Create table <table name> (col1 datatype,col2 datatype,col3 datatype)

Query

CREATE TABLE PASSENGER_TICKETS (PPNO VARCHAR2 (15) PRIMARY

KEY, TICKET_NO NUMBER (9))

Describing table

Query

Desc PASSENGER_TICKETS

Output

Table Column Data Type Length Precision Scale Primary Key Nullable Default

Com

ment

PASSENGER_TICKE

TS

PPNO Varchar2 15 - - 1 - - -

 TICKET_NO Number - 9 0 -

- -

javascript:ret_Column('TIRU.PASSENGER_TICKETS');
javascript:ret_Column('TIRU.PASSENGER_TICKETS');
javascript:ret_Column('PPNO');
javascript:ret_Column('TICKET_NO');

- 40 -

Inserting records into “PASSENGER_TICKETS” table

Syntax

Insert into <table name> values (val 1,val2,val3)

Query

insert into PASSENGER_TICKETS values(1,1203);

insert into PASSENGER_TICKETS values(2,1213);

insert into PASSENGER_TICKETS values(3,1201);

insert into PASSENGER_TICKETS values(4,1202);

insert into PASSENGER_TICKETS values(5,1205);

Display table

Syntax

Select <select list> from <table name>

Query

select * from TICKET;

Output

8. Create the table using following attributes RESERVATION (PNR_NO: NUMERIC

(9): FK, JOURNEY_DATE: DATE, NO_OF_SEATS: INT (8), ADDRESS:

VARCHAR2 (50), CONTACT_NO: NUMERIC (10), STATUS: CHAR (3): YES/NO)

PPNO TICKET_NO

1 1203

2 1213

3 1201

4 1202

5 1205

- 41 -

 FOREIGN KEY(PNR_NO) REFERENCES PASSENGER_TICKECTS(PPNO);

 Creating table

Syntax

Create table <table name> (col1 datatype,col2 datatype,col3 datatype)

Query

create table reservation (pnr_no varchar2(15),journey_date date,no_of_seats

number(8),address varchar2(50),contact_no number(10),status char(3),foreign

key(pnr_no)references passenger_tickets(ppno));

Describing table

Query

Desc reservation

Output

 Inserting records into “reservation” table

Syntax

Insert into <table name> values (val 1,val2,val3)

Table Column Data Type Length Precision Scale Primary Key Nullable Default Comment

RESERV

ATION

PNR_NO Varchar2 15 - - -

- -

 JOURNEY_DATE Date 7 - - -

- -

 NO_OF_SEATS Number - 8 0 -

- -

 ADDRESS Varchar2 50 - - -

- -

 CONTACT_NO Number - 10 0 -

- -

 STATUS Char 3 - - -

javascript:ret_Column('TIRU.RESERVATION');
javascript:ret_Column('TIRU.RESERVATION');
javascript:ret_Column('PNR_NO');
javascript:ret_Column('JOURNEY_DATE');
javascript:ret_Column('NO_OF_SEATS');
javascript:ret_Column('ADDRESS');
javascript:ret_Column('CONTACT_NO');
javascript:ret_Column('STATUS');

- 42 -

Query

insert into reservation values(1,'10/feb/11',5,'amberpet','7416944004','yes');

insert into reservation values(1,'11/feb/11',8,'amberpet','7416944004','yes');

insert into reservation values(2,'11/feb/11',8,'b.b nagar','7207204221','yes');

insert into reservation values(2,'14/feb/11',2,'b.b nagar','7207204221','yes');

insert into reservation values(3,'14/feb/11',3,'ecil','00000000','yes');

insert into reservation values(4,'14/feb/11',4,'nagaram','9700135300','yes');

insert into reservation values(5,'16/feb/11',1,'b.b nagar','8143528258','yes');

insert into reservation values(5,'15/feb/11',7,'b.b nagar','8143528258','yes');

Display table

Syntax

Select <select list> from <table name>

Query

select * from reservation;

Output

PNR_NO JOURNEY_DATE NO_OF_SEATS ADDRESS CONTACT_NO STATUS

1 10-FEB-11 5 amberpet 7416944004 yes

1 11-FEB-11 8 amberpet 7416944004 yes

2 11-FEB-11 8 b.b nagar 7207204221 yes

2 14-FEB-11 2 b.b nagar 7207204221 yes

3 14-FEB-11 3 ecil 0 yes

4 14-FEB-11 4 nagaram 9700135300 yes

5 16-FEB-11 1 b.b nagar 8143528258 yes

5 15-FEB-11 7 b.b nagar 8143528258 yes

- 43 -

 Create the table using following attributes CANCELLATION (PNR_NO: NUMERIC

(9): FK, JOURNEY_DATE: DATE, NO_OF_SEATS: INT (8), ADDRESS:

VARCHAR2 (50), CONTACT_NO: NUMERIC (9), STATUS: CHAR (3): YES/NO)

 FOREIGN KEY(PNR_NO) REFERENCES PASSENGER_TICKECTS(PPNO);

 Creating table

Syntax

Create table <table name> (col1 datatype,col2 datatype,col3 datatype)

Query

create table cancellation (pnr_no varchar2(15),journey_date date,no_of_seats

number(8),address varchar2(50),contact_no number(10),status char(3),foreign

key(pnr_no)references passenger_tickets(ppno));

Describing table

Query

Desc reservation

Output

Table Column Data Type Length Precision Scale Primary Key Nullable Default

Com

ment

CANCELLAT

ION

PNR_NO Varchar2 15 - - -

- -

 JOURNEY_DATE Date 7 - - -

- -

 NO_OF_SEATS Number - 8 0 -

- -

 ADDRESS Varchar2 50 - - -

- -

 CONTACT_NO Number - 10 0 -

- -

 STATUS Char 3 - - -

- -

javascript:ret_Column('TIRU.CANCELLATION');
javascript:ret_Column('TIRU.CANCELLATION');
javascript:ret_Column('PNR_NO');
javascript:ret_Column('JOURNEY_DATE');
javascript:ret_Column('NO_OF_SEATS');
javascript:ret_Column('ADDRESS');
javascript:ret_Column('CONTACT_NO');
javascript:ret_Column('STATUS');

- 44 -

Inserting records into “CANCELLATION” table

Syntax

Insert into <table name> values (val 1,val2,val3)

Query

insert into cancellation values(1,'10/feb/11',5,'amberpet','7416944004','yes');

insert into cancellation values(1,'11/feb/11',8,'amberpet','7416944004','yes');

insert into cancellation values(2,'11/feb/11',8,'b.b nagar','7207204221','yes');

insert into cancellation values(2,'14/feb/11',2,'b.b nagar','7207204221','yes');

insert into cancellation values(3,'14/feb/11',3,'ecil','00000000','yes');

insert into cancellation values(4,'14/feb/11',4,'nagaram','9700135300','yes');

insert into cancellation values(5,'16/feb/11',1,'b.b nagar','8143528258','yes');

insert into cancellation values(5,'15/feb/11',7,'b.b nagar','8143528258','yes');

Display table

Syntax

Select <select list> from <table name>

Query

select * from cancellation

Output

PNR_NO JOURNEY_DATE NO_OF_SEATS ADDRESS CONTACT_NO STATUS

1 10-FEB-11 5 amberpet 7416944004 yes

1 11-FEB-11 8 amberpet 7416944004 yes

2 11-FEB-11 8 b.b nagar 7207204221 yes

2 14-FEB-11 2 b.b nagar 7207204221 yes

3 14-FEB-11 3 ecil 0 yes

- 45 -

26. Write a trigger on passenger to display messages ‘1 Record is inserted’, ‘1 record is

deleted’, ‘1 record is updated’ when insertion, deletion and updation are done on

passenger respectively.

27. Display unique PNR_NO of all passengers.

Query

select distinct(pnr_no) from reservation;

Output

28. Display all the names of male passengers.

Query

select name from passenger where sex='MALE'

Output

4 14-FEB-11 4 nagaram 9700135300 yes

5 16-FEB-11 1 b.b nagar 8143528258 yes

5 15-FEB-11 7 b.b nagar 8143528258 yes

PNR_NO

1

3

5

2

4

NAME

TIRUMALAY

NAGARAJU

AVS.RAVI

- 46 -

29. Display the ticket numbers and names of all the passengers.

Query

select p.name,t.ticket_no from passenger p,passenger_tickets t where

t.ppno=p.ppno

Output

30. Find the ticket numbers of the passengers whose name start with ‘t’ and ends with ‘y’.

Query

select t.ticket_no from passenger p,passenger_tickets t where p.name like

'T%Y'and t.ppno=p.ppno;

Output

TICKET_NO

1203

31. Find the names of passengers whose age is between 15 and 20.

Query

select name from passenger where age between 15 and 20

Output

NAME

TIRUMALAY

SUPRIYA

AMULYA

NAGARAJU

AVS.RAVI

NAME TICKET_NO

TIRUMALAY 1203

SUPRIYA 1213

AMULYA 1201

NAGARAJU 1202

AVS.RAVI 1205

- 47 -

32. Display all the passengers names beginning with ‘A’.

Query

select name from passenger where name like 'A%';

Output

NAME

AMULYA

AVS.RAVI

33. Display the sorted list of passengers names.

Query

select name from passenger order by name;

Output

NAME

AMULYA

AVS.RAVI

NAGARAJU

SUPRIYA

TIRUMALAY

34. Write a query to display the information present in the PASSENGER and

CANCELLATION tables. (Use UNION Operator).

Query

select * from passenger p,cancellation c where p.ppno=c.pnr_no

union

select * from passenger p1,cancellation c1 where p1.ppno=c1.pnr_no

- 48 -

Output

35. Display the number of tickets booked for each PNR_NO using GROUP BY clause.

(Use GROUP BY on PNR_NO).

Query

select pnr_no,sum(no_of_seats) from reservation group by pnr_no;

Output

PNR_NO SUM(NO_OF_SEATS)

1 13

3 3

5 8

2 10

4 4

PP

NO

NAME A

GE

SEX ADDR

ESS

PNR_

NO

JOURNEY_

DATE

NO_OF_S

EATS

ADDR

ESS

CONTAC

T_NO

STAT

US

1 TIRUMA

LAY

19 MAL

E

AMBER

PET

1 10-FEB-11 5 amberpe

t

7416944004 yes

1 TIRUMA
LAY

19 MAL
E

AMBER
PET

1 11-FEB-11 8 amberpe
t

7416944004 yes

2 SUPRIY
A

20 FEMA
LE

B.B
NAGAR

2 11-FEB-11 8 b.b
nagar

7207204221 yes

2 SUPRIY
A

20 FEMA
LE

B.B
NAGAR

2 14-FEB-11 2 b.b
nagar

7207204221 yes

3 AMULY
A

20 FEMA
LE

ECIL 3 14-FEB-11 3 ecil 0 yes

4 NAGAR
AJU

20 MAL
E

NAGAR
AM

4 14-FEB-11 4 nagaram 9700135300 yes

5 AVS.RA
VI

20 MAL
E

B.B
NAGAR

5 15-FEB-11 7 b.b
nagar

8143528258 yes

5 AVS.RA
VI

20 MAL
E

B.B
NAGAR

5 16-FEB-11 1 b.b
nagar

8143528258 yes

- 49 -

36. Find the distinct PNR numbers that are present.

Query

Select distict (pnr_no) from reservation;

Output

37. Find the number of tickets booked by a passenger where the number of seats is

greater than 5. (Use GROUP BY, WHERE and HAVING clauses).

Query

select pnr_no,sum(no_of_seats) from reservation group by pnr_no having

sum(no_of_seats) > 5

Output

PNR_NO SUM(NO_OF_SEATS)

1 13

5 8

2 10

 38. Find the total number of cancelled seats.

Query

select sum(no_of_seats) from cancellation;

Output

SUM(NO_OF_SEATS)

38

PNR_NO

1

3

5

2

4

- 50 -

VIVA QUESTIONS

1. What is the syntax for create command?

2. What is the difference between primary key and foreign key?

3. What is the command to display data from a table?

4. What are the types of clause used in mysql ?

- 51 -

WEEK 8 & 9:

Querying Using Aggregate functions (COUNT, SUM, AVERAGE using GROUPBY

and HAVING) Queries using Aggregate functions (COUNT, SUM, AVG, MAX and

MIN), GROUP BY, HAVING and Creation and dropping of Views.

Objectives:

Student will able to learn to perform mathematical operations that return a single value, calculated from

values in a column.

Outcomes:

Student gains the knowledge to perform aggregate operations on the database appropriately.

Aggregate operators: In addition to simply retrieving data, we often want to perform

some computation or summarization. SQL allows the use of arithmetic expressions. We

now consider a powerful class of constructs for computing aggregate values such as MIN

and SUM.

1. Count: COUNT following by a column name returns the count of tuple in that

column. If DISTINCT keyword is used then it will return only the count of unique tuple

in the column. Otherwise, it will return count of all the tuples (including duplicates) count

(*) indicates all the tuples of the column.

Syntax: COUNT (Column name)

Example: SELECT COUNT (Sal) FROM emp;

2. SUM: SUM followed by a column name returns the sum of all the values in that

column.

Syntax: SUM (Column name)

Example: SELECT SUM (Sal) From emp;

3. AVG: AVG followed by a column name returns the average value of that column

values.

- 52 -

Syntax: AVG (n1,n2..)

Example: Select AVG(10, 15, 30) FROM DUAL;

4. MAX: MAX followed by a column name returns the maximum value of that column.

Syntax: MAX (Column name)

Example: SELECT MAX (Sal) FROM emp;

SQL> select deptno,max(sal) from emp group by deptno;

DEPTNO MAX(SAL)

------ --------

10 5000

20 3000

30 2850

SQL> select deptno,max(sal) from emp group by deptno having max(sal)<3000;

 DEPTNO MAX(SAL)

 ----- --------

 30 2850

5. MIN: MIN followed by column name returns the minimum value of that column.

Syntax: MIN (Column name)

Example: SELECT MIN (Sal) FROM emp;

SQL>select deptno,min(sal) from emp group by deptno having min(sal)>1000;

 DEPTNO MIN(SAL)

 ----- --------

 10 1300

- 53 -

VIEW: In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are

fields from one or more real tables in the database.

You can add SQL functions, WHERE, and JOIN statements to a view and present

the data as if the data were coming from one single table.

 A view is a virtual table, which consists of a set of columns from one or more

tables. It is similar to a table but it doest not store in the database. View is a query stored

as an object.

Syntax: CREATE VIEW view_name AS SELECT set of fields FROM

relation_name WHERE (Condition)

1. Example:

 SQL>CREATE VIEW employee AS SELECT empno,ename,job FROM EMP

WHERE job = ‘clerk’;

 View created.

 SQL> SELECT * FROM EMPLOYEE;

 EMPNO ENAME JOB

---- ------ -------

 7369 SMITH CLERK

 7876 ADAMS CLERK

 7900 JAMES CLERK

 7934 MILLER CLERK

- 54 -

2.Example:

CREATE VIEW [Current Product List] AS

SELECT ProductID,ProductName

FROM Products

WHERE Discontinued=No

DROP VIEW: This query is used to delete a view , which has been already created.

Syntax: DROP VIEW View_name;

Example : SQL> DROP VIEW EMPLOYEE;

 View dropped

 Queries using Conversion functions (to_char, to_number and to_date), string

functions (Concatenation, lpad, rpad, ltrim, rtrim, lower, upper, initcap, length,

substr and instr), date functions (Sysdate, next_day, add_months, last_day,

months_between, least, greatest, trunc, round, to_char, to_date)

1. Conversion functions:To_char: TO_CHAR (number) converts n to a value

of VARCHAR2 data type, using the optional number format fmt. The value n can

be of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE.

SQL>select to_char(65,'RN')from dual;

To_number : TO_NUMBER converts expr to a value of NUMBER data type.

SQL> Select to_number('1234.64') from Dual;

1234.64

To_date:TO_DATE converts char of CHAR, VARCHAR2, NCHAR,

or NVARCHAR2 data type to a value of DATE data type.

- 55 -

SQL>SELECT TO_DATE('January 15, 1989, 11:00 A.M.')FROM DUAL;

TO_DATE('

15-JAN-89

2. String functions:

Concat: CONCAT returns char1 concatenated with char2. Both char1 and char2 can be

any of the datatypes

SQL>SELECT CONCAT(‘ORACLE’,’CORPORATION’)FROM DUAL;

ORACLECORPORATION

Lpad: LPAD returns expr1, left-padded to length n characters with the sequence of

characters in expr2.

SQL>SELECT LPAD(‘ORACLE’,15,’*’)FROM DUAL;**********ORACLE

Rpad: RPAD returns expr1, right-padded to length n characters with expr2, replicated as

many times as necessary.

SQL>SELECT RPAD (‘ORACLE’,15,’*’)FROM DUAL;

ORACLE*********

Ltrim: Returns a character expression after removing leading blanks.

SQL>SELECT LTRIM(‘SSMITHSS’,’S’)FROM DUAL;

MITHSS

Rtrim: Returns a character string after truncating all trailing blanks

SQL>SELECT RTRIM(‘SSMITHSS’,’S’)FROM DUAL;

SSMITH

- 56 -

Lower: Returns a character expression after converting uppercase character data to

lowercase.

SQL>SELECT LOWER(‘DBMS’)FROM DUAL;

dbms

Upper: Returns a character expression with lowercase character data converted to

uppercase

SQL>SELECT UPPER(‘dbms’)FROM DUAL;

DBMS

Length: Returns the number of characters, rather than the number of bytes, of the

given string expression, excluding trailing blanks.

SQL>SELECT LENGTH(‘DATABASE’)FROM DUAL;

8

Substr: Returns part of a character, binary, text, or image expression.

SQL>SELECT SUBSTR(‘ABCDEFGHIJ’3,4)FROM DUAL;

CDEF

Instr: The INSTR functions search string for substring. The function returns an integer

indicating the position of the character in string that is the first character of this

occurrence.

SQL>SELECT INSTR('CORPORATE FLOOR','OR',3,2)FROM DUAL;

14

3. Date functions:

Sysdate: SQL>SELECT SYSDATE FROM DUAL;

29-DEC-08

- 57 -

next_day:

SQL>SELECT NEXT_DAY(SYSDATE,’WED’)FROM DUAL;

05-JAN-09

add_months:

SQL>SELECT ADD_MONTHS(SYSDATE,2)FROM DUAL;

28-FEB-09

last_day:

SQL>SELECT LAST_DAY(SYSDATE)FROM DUAL;

31-DEC-08

months_between:

SQL>SELECT MONTHS_BETWEEN(SYSDATE,HIREDATE)FROM EMP; 4

Least:

SQL>SELECT LEAST('10-JAN-07','12-OCT-07')FROM DUAL;

10-JAN-07

Greatest:

SQL>SELECT GREATEST('10-JAN-07','12-OCT-07')FROM DUAL;

10-JAN-07

Trunc:

SQL>SELECT TRUNC(SYSDATE,'DAY')FROM DUAL;

28-DEC-08

- 58 -

Round:

SQL>SELECT ROUND(SYSDATE,'DAY')FROM DUAL;

28-DEC-08

to_char:

SQL> select to_char(sysdate, "dd\mm\yy") from dual;

24-mar-05.

to_date:

SQL> select to_date(sysdate, "dd\mm\yy") from dual;

24-mar-o5.

VIVA QUESTIONS

1. What are aggregate functions?

2. What is the difference between LPAD and RPAD?

3. Define View?

4. What is the difference between group by and order by clause?

- 59 -

WEEK 10

Triggers: Creation of INSERT TRIGGER, DELETE TRIGGER, UPDATE TRIGGER.

Objectives:

Student will able to learn to monitor a database and take initiate action when a condition occurs.

Outcomes:

Student gains the ability to change database manager from a passive system to an active one.

1)Write a trigger which ill check if the passenger is greater than 40 before a row is

inserted into a passenger table.

2 SQL>CREATE OR REPLACE TRIGGER passenger_age

3 Before insert on passenger

4 FOR EACH ROW

5 DECLARE

6 BEGIN

7 IF(:new, Age<40)THEN

8 Raise-application-error (-20110,’invalid age’);

9 END IF;

10 END;

Trigger created

SQL>insert into passenger values (81,’srinu’, 10, 22);

Value inserted

SQL>insert into passenger values (25,’rksd’, 5, 16);

ORA-20110: invalid age.

ORA-06512: at”gcet_550.passenger_age”, line 4.

ORA-04088: error during execution of trigger’gcet_550.passenger_age’

- 60 -

VIVA QUESTIONS

1. What is Trigger?

2. What is Nested Trigger?

3. What are the types on Triggers?

4. What is the difference between For Trigger and After trigger?

- 61 -

WEEK 11:

Procedures: Creation of stored procedures, Execution of procedure and modification of

procedures.

Objectives:

Student will able to learn the features like reusability, maintainability and modularity.

Student will able to learn to develop procedures and function for various operation.

Outcomes:

Student gains the knowledge to implement procedures and function for various operations.

CREATE PROCEDURE my Proc()

BEGIN

SELECT COUNT (Tickets) FROM Ticket WHERE age>=40;

End;

Procedures created

 SQL>CREATE PROCEDURE myproc(in_customer_id INT)

BEGIN

DECLARE v_id INT;

DECLARE v_name VARCHAR(30);

DECLARE c1 CURSOR FOR SELECT stdId,stdFirstname

FROM students WHERE stdId=in_customer_id;

OPEN c1;

FETCH c1 into v_id, v_name;

Close c1;

End;

/

PL/SQL procedure successfully completed.

- 62 -

VIVA QUESTIONS

1. What is difference between Function and Stored Procedure?

2. What is Stored Procedure?

3. What is PL/SQL?

4. Show how functions and procedures are called in a PL/SQL block?

- 63 -

WEEK 12

Cursors: A cursor on the given database.

Objectives:

Student will able to learn about cursors that enable traversal over the records in a

database.

Outcomes:

Student gains the ability to implement cursors on the database.

We use a cursor when we have a SELECT statement that returns more than one row from

the database. A cursor is basically a set of rows that we can access one at a time.

We retrieve the rows into the cursor using our SELECT statement and then fetch the rows

from the cursor.

We may follow five steps when using a cursor.

Declare variables to store the column values from the SELECT statements.

1. Declare the cursor specifying our SELECT statement.

2. Open the cursor.

3. Fetch the rows from the cursor.

4. Close the cursor.

declare

 v_sno student.sno%TYPE;

 v_snname student.sname%TYPE;

 v_branch student.branch%TYPE;

 v_age student.age%TYPE;

 cursor MyCursor (c_sno number) is select sno,sname,branch,age from student

where sno=c_sno;--c_record MyCursor%rowtype;

begin

 if (NOT MyCursor%ISOPEN)then

 Open MyCursor (1201);

 end if;

 loop

- 64 -

 fetch MyCursor into v_sno,v_sname,v_branch,v_age;

 exit when MyCursor%NOTFOUND;

 dbms_output_line

(“Record’||MyCursor%ROWCOUNT||’:’||v_sno||’’||v_sname||’’||v_branch||’’||v_age)

;

 endloop;

 if(MyCursor%ISOPEN)then

 close MyCursor;

 endif;

 if(NOT MyCursor%ISOPEN)then

 oprn MyCursor(1202);

 endif;

 loop

 fetch MyCursor into v_sno,v_sname,v_branch,v_age;

 exit when MyCursor%NOTFOUND;

 dbms_output.put_line (‘Record’||MyCursor%ROWCOUNT||’:’||v_sno||’’||v_snam

e||’’||v_branch||’’||v_age);

 endloop;

 if (MyCursor%ISOPEN)then

 Close Mycursor;

 endif;

end;

VIVA QUESTIONS

1. Show code of a cursor for loop?

2. Explain uses of cursor?

3. What is Raise_application_error?

4. What is Cursor?

- 65 -

ADDITIONAL PROGRAMS

- 66 -

1) Queries on employee, department tables

syntax

SQL>Create table <table name> (col1 datatype,col2 datatype,col3 datatype)

Query

SQL> create table employee1(empsid

number,empname varchar(20),empjob

varchar(20),empsalary number,empjoindate

varchar(20));

 Describing table

 SQL> desc employee1;

 Name Null? Type

 --- -------- -------------------

 EMPSID NUMBER

 EMPNAME VARCHAR2(20)

 EMPJOB VARCHAR2(20)

 EMPSALARY NUMBER

 EMPJOINDATE VARCHAR2(20)

 Inserting records into table

SQL>insert into employee1

values(&empsid,&empname,&empjob,&empsalary,&empjoindate);

Enter value for empsid: 20

Enter value for empname: 'anil'

Enter value for empjob: 'java'

- 67 -

Enter value for empsalary: 20000

Enter value for empjoindate: '4-jan-2009'

old 1: insert into employee1

values(&empsid,&empname,&empjob,&empsalary,&empjoindate)

new 1: insert into employee1 values(20,'anil','java',20000,'4-jan-2009')

1 row created.

SQL> /

Enter value for empsid: 50

Enter value for empname: 'jyothi'

Enter value for empjob: 'faculty'

Enter value for empsalary: 30000

Enter value for empjoindate: '5-mar-2003'

old 1: insert into employee1

values(&empsid,&empname,&empjob,&empsalary,&empjoindate)

new 1: insert into employee1 values(50,'jyothi','faculty',30000,'5-mar-2003')

1 row created.

SQL> /

Enter value for empsid: 60

Enter value for empname: 'avinash'

Enter value for empjob: 'software'

Enter value for empsalary: 30000

Enter value for empjoindate: '5-apr-2009'

old 1: insert into employee1

values(&empsid,&empname,&empjob,&empsalary,&empjoindate)

new 1: insert into employee1 values(60,'avinash','software',30000,'5-apr-2009')

1 row created.

SQL> /

Enter value for empsid: 70

- 68 -

Enter value for empname: 'anitha'

Enter value for empjob: 'sql'

Enter value for empsalary: 40000

Enter value for empjoindate: '2-jun-2008'

old 1: insert into employee1

values(&empsid,&empname,&empjob,&empsalary,&empjoindate)

new 1: insert into employee1 values(70,'anitha','sql',40000,'2-jun-2008')

1 row created.

Display table

SQL> select * from employee1;

 EMPSID EMPNAME EMPJOB EMPSALARY EMPJOINDATE

---------- -------------------- -------------------- ---------- ------------

 20 anil java 20000 4-jan-2009

 50 jyothi faculty 30000 5-mar-2003

 60 avinash software 30000 5-apr-2009

 70 anitha sql 40000 2-jun-2008

SQL> create table department(dpsid

 2 number,dpname varchar(20),dpjob

 3 varchar(20),dpjoindate

 4 varchar(20),dplocation varchar(20));

Table created.

SQL> desc department;

 Name Null? Type

 --- -------- ------------------

 DPSID NUMBER

 DPNAME VARCHAR2(20)

- 69 -

 DPJOB VARCHAR2(20)

 DPJOINDATE VARCHAR2(20)

 DPLOCATION VARCHAR2(20)

SQL> insert into department

values(&dpsid,&dpname,&dpjob,&dpjoindate,&dplocation);

Enter value for dpsid: 1

Enter value for dpname: 'cse'

Enter value for dpjob: 'dbms'

Enter value for dpjoindate: '4-jan-2002'

Enter value for dplocation: 'hyd'

old 1: insert into department values(&dpsid,&dpname,&dpjob,&dpjoindate,&dplocation)

new 1: insert into department values(1,'cse','dbms','4-jan-2002','hyd')

1 row created.

SQL> /

Enter value for dpsid: 2

Enter value for dpname: 'os'

Enter value for dpjob: 'co'

Enter value for dpjoindate: '5-apr-2003'

Enter value for dplocation: 'hyd'

old 1: insert into department values(&dpsid,&dpname,&dpjob,&dpjoindate,&dplocation)

new 1: insert into department values(2,'os','co','5-apr-2003','hyd')

1 row created.

SQL> /

Enter value for dpsid: 3

Enter value for dpname: 'ece'

Enter value for dpjob: 'stld'

Enter value for dpjoindate: '6-dec-2004'

Enter value for dplocation: 'hyd'

- 70 -

old 1: insert into department values(&dpsid,&dpname,&dpjob,&dpjoindate,&dplocation)

new 1: insert into department values(3,'ece','stld','6-dec-2004','hyd')

1 row created.

SQL> /

Enter value for dpsid: 4

Enter value for dpname: 'eee'

Enter value for dpjob: 'bee'

Enter value for dpjoindate: '6-jun-2006'

Enter value for dplocation: 'hyd'

old 1: insert into department values(&dpsid,&dpname,&dpjob,&dpjoindate,&dplocation)

new 1: insert into department values(4,'eee','bee','6-jun-2006','hyd')

1 row created.

SQL> select * from department;

 DPSID DPNAME DPJOB DPJOINDATE DPLOCATION

---------- -------------------- -------------------- -------------------- --------------

 1 cse dbms 4-jan-2002 hyd

 2 os co 5-apr-2003 hyd

 3 ece stld 6-dec-2004 hyd

 4 eee bee 6-jun-2006 hyd

DDL&DML COMMANDS on Sailors, boats & reserves

DDL(Data Definition Language):-

SQL> alter table employee1 add emptime number;

Table altered.

SQL> desc employee1;

- 71 -

Name Null? Type

 --- -------- -------------

 EMPSID NUMBER

 EMPNAME VARCHAR2(20)

 EMPJOB VARCHAR2(20)

 EMPSALARY NUMBER

 EMPJOINDATE VARCHAR2(20)

 EMPTIME NUMBER

SQL> drop table employee1;

Table dropped.

SQL> desc employee1;

ERROR:

ORA-04043: object employee1 does not exist

1. Create the table using following attributes Sailors (sid: number, sname:

varchar2(20), rating: number, age: number(4,2));

Creating table

Syntax

Create table <table name> (col1 datatype,col2 datatype,col3 datatype)

Query

Create table sailors (sid number, sname varchar2(20), rating number, age number(4,2));

Describing table

Query

Desc sailors

Output

- 72 -

Inserting records into table

Syntax

Insert into <table name> values (val 1,val2,val3)

Query

insert into sailors values(22,'dustin',7,45.0);

insert into sailors values(29,'brutus',1,33.0);

insert into sailors values(31,'lubber',8,55.5);

insert into sailors values(32,'andy',8,25.5);

insert into sailors values(58,'rusty',10,35.0);

insert into sailors values(64,'horatio',7,35.0);

insert into sailors values(71,'zobra',9,35.0);

insert into sailors values(74,'horatio',9,35.0);

insert into sailors values(85,'art',3,25.5);

insert into sailors values(95,'bob',3,63.5);

 Display table

Syntax

Select <select list> from <table name>

Query

select * from sailors;

Table Column Data Type Length Precision Scale Primary Key Nullable Default Comment

SAILORS SID Number - - - 1 - - -

 SNAME Varchar2 20 - - -

- -

 RATING Number - - - -

- -

 AGE Number - 4 2 -

- -

1 - 4

javascript:ret_Column('TIRU.SAILORS');
javascript:ret_Column('SID');
javascript:ret_Column('SNAME');
javascript:ret_Column('RATING');
javascript:ret_Column('AGE');

- 73 -

Output

 2. Create the table using following attributes Boats (bid:number,

bname:varchar22(10),color:varchar2(10));

Creating table

Syntax

Create table <table name> (col1 datatype,col2 datatype,col3 datatype)

Query

Create table Boats (bid number, bname varchar2(10),color varchar2(10));

Describing table

Query

Desc boats

Output

SID SNAME RATING AGE

22 dustin 7 45

29 brutus 1 33

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35

64 horatio 7 35

71 zobra 10 16

74 horatio 9 35

85 art 3 25.5

95 bob 3 63.5

Table Column Data Type Length Precision Scale Primary Key Nullable Default Comment

- 74 -

Inserting records into table

Syntax

Insert into <table name> values (val 1,val2,val3)

Query

insert into sailors values(101,'interlake',’blue’);

insert into sailors values(102,'interlake',’red’);

insert into sailors values(103,'clipper’,’green’);

insert into sailors values(104,'marine',’red’);

Display table

Syntax

Select <select list> from <table name>

Query

select * from boats;

Output

BOATS BID Number - - - 1 - - -

 BNAME Varchar2 10 - - -

- -

 COLOR Varchar2 10 - - -

- -

1 - 3

BID BNAME COLOR

101 interlake blue

102 interlake red

103 clipper green

104 marine red

javascript:ret_Column('TIRU.BOATS');
javascript:ret_Column('BID');
javascript:ret_Column('BNAME');
javascript:ret_Column('COLOR');

- 75 -

3. Create the table using following attributes Reserves (sid: number, bid: number, day:

date);

Creating table

Syntax

Create table <table name> (col1 datatype,col2 datatype,col3 datatype)

Query

Create table Reserves (sid number, bid number, day date);

Describing table

Query

Desc reserves

Output

 Inserting records into table

Syntax

Insert into <table name> values (val 1,val2,val3)

Query

insert into sailors values(22,101,’10/10/98’);

insert into sailors values(22,102,’10/10/98’);

insert into sailors values(22,103,’10/8/98’);

insert into sailors values(22,104,’10/7/98’);

Table Column
Data
Type

Lengt
h

Precisio
n

Scal
e

Primary
Key Nullable

Defaul
t Comment

RESERV
ES

SID Number - - - 1 - - -

 BID Number - - - 2 - - -

 DAY Date 7 - - -

- -

javascript:ret_Column('TIRU.RESERVES');
javascript:ret_Column('TIRU.RESERVES');
javascript:ret_Column('SID');
javascript:ret_Column('BID');
javascript:ret_Column('DAY');

- 76 -

insert into sailors values(31,102,’11/10/98’);

insert into sailors values(31,103,’10/6/98’);

insert into sailors values(31,104,’10/12/98’);

insert into sailors values(64,101,’9/5/98’);

 Display table

Syntax

Select <select list> from <table name>

Query

select * from reserves;

Output

1) Find the names of sailors who have reserved boat number 103 (Using AND).

Query

Select s. sname from sailors s, reserves r where s.sid=r.sid and r.bid=103;

SID BID DAY

22 101 10/10/98

22 102 10/10/98

64 102 9/8/98

74 103 9/8/98

22 103 10/8/98

22 104 10/7/98

31 102 11/10/98

31 103 11/6/98

31 104 11/12/98

64 101 9/5/98

SNAME

horatio

- 77 -

Output

2) Find the sids of sailors who have reserved a red boat (Using AND).

Query

select r.sid from boats b,reserves r where b.bid=r.bid and b.color='red'

Output

3) Find the names of sailors who have reserved a red boat (Using AND).

Query

select s.sname from sailors s,reserves r,boats b where s.sid=r.sid and r.bid=b.bid and

b.color='red'

Output

4) Find the colors of boats reserved by Lubber (Using AND).

dustin

lubber

SID

22

64

22

31

31

SNAME

dustin

horatio

dustin

lubber

lubber

- 78 -

Query

select b.color from sailors s,reserves r,boats b where s.sid=r.sid and r.bid=b.bid and

s.sname='lubber'

Output

5) Find the names of sailors who have reserved at least one boat.

Query

Select s.sname from sailors s, reserves r where s.sid=r.sid;

Output

6) Find the ages of sailors whose name begins and ends with B and has at least three

characters.

Query

Select s.age from sailors s where s.sname like 'b_%b';

Output

7) Find the names of sailors who have reserved a red or a green boat (Using AND,OR).

COLOR

green

red

red

SNAME

lubber

dustin

horatio

AGE

63.5

- 79 -

Query

select s.sname from sailors s,reserves r,boats b where s.sid=r.sid and r.bid=b.bid and

(b.color='re' or b.color='green')

Output

8) Find the names of sailors who have reserved both a red and a green boat.

Query

select s.sname from sailors s,reserves r,boats b

where s.sid =r.sid and r.bid=b.bid and b.color='red'

intersect

select s2.sname from sailors s2,reserves r2,boats b2

where s2.sid =r2.sid and r2.bid=b2.bid and b2.color='green'

Output

9)Find the sids of sailors who have reserved red boats but not green boats.

Query

Select s1.sname from sailors s1, reserves r1, boats b1 where s1.sid=r1.sid and

r1.bid=b1.bid and b1.color='red'

and s1.sid not in (select s2.sid from sailors s2,boats b2,reserves r2 where

s2.sid=r2.sid and r2.bid=b2.bid and b2.color='green');

SNAME

horatio

dustin

lubber

SNAME

dustin

horatio

lubber

- 80 -

Output

SNAME

horatio

10) Find all sids of sailors who have a rating of 10 or reserved boat 104.

Query

Select s.sid from sailors s where s.rating=10

Union

Select r.sid from reserves r where r.bid=104;

Output

SID

22

31

58

71

11) Find the names of sailors who have reserved boat 103 (Using nested queries).

Query

Select s.sname from sailors s where s.sid in (select r.sid from reserves r where

r.bid=103)

Output

SNAME

dustin

lubber

horatio

- 81 -

12) Find the names of sailors who have reserved a red boat (Using nested queries).

Query

select s.sname from sailors s where s.sid in (select r.sid from reserves r where r.bid

in(select b.bid from boats b where b.color='red'));

Output

13. Find the names of sailors who have not reserved a red boat (Using nested queries).

Query

Select s.sname from sailors s where s.sid not in (select r.sid from reserves r where

r.bid in (select b.bid from boats b where b.color=’red’));

Output

14. Find the name of sailors who have reserved boat number 103 (Using correlated nested

query).

Query

Select s.sname from sailors s where exists (select * from reserves r where

r.bid=103 and r.sid=s.sid);

SNAME

dustin

lubber

horatio

SNAME

brutus

andy

rusty

zobra

horatio

art

bob

- 82 -

Output

SNAME

dustin

lubber

horatio

15. Find sailors whose rating is better than some sailor called Horatio (Using ANY

Operator).

Query

select s.sid from sailors s where s.rating > any(select s1.rating from sailors s1

where s1.sname='horatio');

Output

16. Find sailors whose rating is better than every sailor called Horatio (Using ALL

Operator).

Query

Select s1.sid from sailors s1 where s1.rating > all (select s2.rating from sailors s2

where s2.sname='horatio');

Output

SID

58

71

17. Find the sailors with the highest rating (Using ALL Operator).

SID

31

32

58

71

74

- 83 -

Query

Select s1.sid from sailors s1 where s1.rating >= all (select s2.rating from sailors

s2);

Output

18. Find the names of sailors who have reserved both a red and a green boat (Using

nested query).

Query

Select s1.sname from sailors s1, reserves r1, boats b1 where s1.sid=r1.sid and

r1.bid=b1.bid and b1.color='red'

and s1.sid in (select s2.sid from sailors s2,boats b2,reserves r2 where s2.sid=r2.sid

and r2.bid=b2.bid and b2.color='green');

Output

SNAME

lubber

dustin

19. Find the average age of all sailors.

Query

Select avg (s.age) from sailors s;

Output

SID

58

71

AVG(S.AGE)

36.9

- 84 -

20. Find the average age of sailors with a rating of 10.

Query

Select avg (s.age) from sailors s where s.rating=10;

Output

21. Find the name and age of the oldest sailor.

Query

Select s.sname,s.age from sailors s where s.age=(select max (s2.age) from sailors

s2);

Output

22. Count the number of different sailor names.

Query

Select count(distinct(s.sname)) from sailors s;

Output

COUNT(DISTINCT(S.SNAME))

9

AVG(S.AGE)

25.5

SNAME AGE

bob 63.5

- 85 -

23. Find the names of sailors who are older than oldest sailor with a rating 10 (Using

Aggregate Operators).

Query

Select s1.sname from sailors s1 where s1.age > (select max (s2.age) from sailors s2

where s2.rating =10);

Output

24. Find the age of the youngest sailor who is eligible to vote for each rating level with at

least two such sailors.

Query

Select s.rating, min (s.age) as minage from sailors s where s.age>=18 group by

s.rating having count (*) > 1;

25.Find the age of the youngest sailor for each rating level (Using Group By).

Query

Select s.rating, min (s.age) from sailors s group by s.rating;

Output

SNAME

dustin

lubber

bob

RATING MIN(S.AGE)

1 33

8 25.5

7 35

3 25.5

10 16

9 35

